Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T20:44:05.246Z Has data issue: false hasContentIssue false

Surjectivity of mod Representations Attached to Elliptic Curves and Congruence Primes

Published online by Cambridge University Press:  20 November 2018

Imin Chen*
Affiliation:
Max Planck Institut für Mathematik Vivatsgasse 7, P.O. Box 7280 D-53072 Bonn, Germany, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a modular elliptic curve $E/\mathbb{Q}$, we show a number of links between the primes $\ell $ for which the mod $\ell $ representation of $E/\mathbb{Q}$ has projective dihedral image and congruence primes for the newform associated to $E/\mathbb{Q}$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2002

References

[1] Breuil, C., Conrad, B., Diamond, F. and Taylor, R., On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer.Math. Soc., to appear.Google Scholar
[2] Chen, I., On Siegel's modular curve of level 5 and the class number one problem. J. Number Theory (2) 74(1999).Google Scholar
[3] Cohn, P. M., Algebra, Volume 2. John Wiley & Sons, second edition, 1982.Google Scholar
[4] Cremona, J. E., Algorithms for modular elliptic curves. Cambridge University Press, second edition, 1997.Google Scholar
[5] Kraus, A., Une remarque sur les points de torsion des courbes elliptiques. C. R. Acad. Sci. Paris S érie I Math. 321 (1995), 3211995.Google Scholar
[6] Mazur, B., Rational isogenies of prime degree. Invent.Math. 44 (1978), 441978.Google Scholar
[7] Miyake, T., Modular Forms. Springer-Verlag, 1989.Google Scholar
[8] Momose, F., Galois action on some ideal section points of the abelian variety associated with a modular form and its application. Nagoya Math. J. 91 (1983), 911983.Google Scholar
[9] Momose, F., Rational points on the modular curves X split(p). Compositio Math. 52 (1984), 521984.Google Scholar
[10] Ribet, K., On l-adic representations attached to modular forms. Invent.Math. 28 (1975), 281975.Google Scholar
[11] Ribet, K., On modular representations of Gal(Q j Q) arising from modular forms. Invent.Math. 100 (1990), 1001990.Google Scholar
[12] Serre, J. P., Corps locaux. Number VIII in Publications de l'Université de Nancago, Hermann, Paris, deuxifieme edition, 1968.Google Scholar
[13] Serre, J. P., Propriétés galoisiennes des points d'ordrefini des courbes elliptiques. Invent.Math. 15 (1972), 151972.Google Scholar
[14] Serre, J. P., Sur les représentations modulaires de degré 2 de Gal(Q/Q). Duke Math. J. (1) 54 (1987), 541987.Google Scholar
[15] Weil, A., On a certain type of characters of the idfiele-class groups of an algebraic number-field. In: Proceedings of the international symposium of algebraic number theory, Tokyo & Nikko, 1955, Tokyo, 1956, Science Council of Japan, 1–7.Google Scholar