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Surjectivity of mod ` Representations
Attached to Elliptic Curves and
Congruence Primes

Imin Chen

Abstract. For a modular elliptic curve E/Q , we show a number of links between the primes ` for

which the mod ` representation of E/Q has projective dihedral image and congruence primes for the

newform associated to E/Q .

1 Introduction

Let E/Q be an elliptic curve. Denote by ρE/Q,` : GQ → GL2(F`) its mod ` represen-

tation, i.e. the representation obtained by the action of the absolute Galois group GQ

of Q on the `-torsion points of E/Q for ` prime. Let SE/Q = {` prime | ρE/Q,` is not

surjective}.

Theorem 1.1 (Serre, [13]) The set SE/Q is finite if E/Q does not have complex multi-

plication.

In the same paper [13], the following question was asked.

Question 1.2 Is SQ =
⋃

E/Q
SE/Q finite as E/Q runs through elliptic curves without

complex multiplication?

This question is usually analyzed according to the nature of the image of ρE/Q,`.

If ρE/Q,` is not surjective, then by a classification of the subgroups of GL2(F`) we

have that im ρE/Q,` is contained the normalizer N ′ or N of a non-split or split Cartan

subgroup, a Borel subgroup B, or a subgroup D with projective image S4. The former

three subgroups can be conjugated into one of the following standard forms (under

the assumption ` is odd in case of N ′), respectively,

N ′ =

{(
α λβ
β α

)
,

(
α λβ
−β −α

) ∣∣∣∣ α, β ∈ F`, (α, β) 6= (0, 0)

}

N =

{(
a 0

0 b

)
,

(
0 b

a 0

) ∣∣∣∣ a, b ∈ F
×
`

}
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B =

{(
a b

0 d

) ∣∣∣∣ a, d ∈ F
×
` , b ∈ F`

}
,

where λ is a non-square in F
×
` .

Let SH
E/Q
= {` prime | im(ρE/Q,`) ⊂ a conjugate of H}. For H being conjugate

to one of N ′, N , B, D, one can ask whether SH
Q =

⋃
E/Q

SH
E/Q

is finite as E/Q runs

through elliptic curves without complex multiplication.

Mazur’s [6] results on rational isogenies of prime degree show that

SB
Q ⊂ {p prime | p ≤ 37}.

Momose shows [9] that an E/Q with im(ρE/Q,`) contained in a conjugate of N has

potentially good reduction at all odd primes if ` > 13. These results rely on studying

the associated modular curves and bounding their Q-rational points via the arith-

metic and geometry of their jacobians. Finally, Serre shows that SD
Q ⊂ {p prime |

p ≤ 13} using local methods (cf. [6] p. 36).

The case of N ′ is the most difficult to study using jacobians of modular curves

because the jacobians in question do not have a non-trivial quotient with finitely-

many Q-rational points.

In this paper, we investigate more carefully the sets SN
E/Q

and SN ′

E/Q
for a fixed ellip-

tic curve E/Q . Under the assumption of modularity we will analyze these sets from

the point of view of modular forms.

Remark 1.3 Breuil, Conrad, Diamond and Taylor have recently established the

modularity of all elliptic curves over Q [1] so this assumption is no longer neces-

sary.

We briefly recall one such connection implicit in work of Ribet [10] and Kraus

[5]. Suppose E/Q is such that im(ρE/Q,`) is contained in H where H = N ′,N and

` is odd. Let C ′ and C denote the split and non-split Cartan subgroups which are

normalized by N ′ and N , respectively.

Let εE/Q,` be the character obtained by composing ρE/Q,` with the map to the

quotients N/C ∼= N ′/C ′ ∼= {±1}. The character εE/Q,` is non-trivial in the case

H = N ′ as complex conjugation cannot be sent to an element in C ′ under ρE/Q,`. In

the case H = N , we may assume without loss of generality that εE/Q,` is non-trivial

or else we are back in the H = B case. Thus, the character εE/Q,` cuts out a quadratic

extension K of Q which is imaginary in the case H = N ′.

The representation ρE/Q,`
∼= IndQ

K χ is induced from a character χ : GK → F×,

where F = F`2 or F` in the cases H = N ′ or N , respectively. It thus has the property

ρE/Q,` ⊗ εE/Q,`
∼= ρE/Q,`. The following lemma can then be shown.

Lemma 1.4 Let E/Q be a modular elliptic curve whose associated newform is f ∈
S2

(
Γ0(NE)

)
. Suppose im(ρE/Q,`) ⊂ H with H = N ′,N and ` is odd. Let E ′ be the

twist of E by εE/Q,`, and let f ′ be the corresponding twist of f ∈ S2

(
Γ0(NE)

)
. Then

NE ′ = NE and f ′ ∈ S2

(
Γ0(NE)

)
is a newform.
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Proof Kraus shows in [5] that the type of reduction (good, multiplicative, additive)

of E and E ′ are the same, i.e. the tame exponents εp of E and E ′ are the same. On the

other hand, the wild exponent δp of E depends only on the restriction of ρE/Q,` and

ρE ′,` = ρE/Q,` ⊗ εE/Q,` to the wild inertia group at p. For p ≥ 3, the restrictions are

the same as εE/Q,` is trivial on the wild inertia at p. For p = 2, the restrictions still

have the same image.

We say that two eigenforms f , g ∈ S2

(
Γ0(N)

)
are congruent modulo λ if ap( f ) ≡

ap(g) (mod λ) for p - `N where λ is a prime above ` of Q
(

ap( f ), ap(g)
)

. We say

that ` is a congruence prime for newform f ∈ S2

(
Γ0(N)

)
, if there exists an eigen-

form g in the (Petersson) orthogonal complement of f such that g is congruent to f

modulo λ above `.
The property that ρE ′/Q,`

∼= ρE/Q,` ⊗ εE/Q,`
∼= ρE/Q,` implies the two newforms

f , f ′ are congruent modulo `. Thus the following proposition holds.

Proposition 1.5 Let E/Q be a modular elliptic curve whose associated newform is f ∈
S2

(
Γ0(NE)

)
. Suppose ` is odd and im(ρE/Q,`) is contained in N ′, or N but not C. Then

` is a congruence prime for f .

In this paper, we will show that there are additional congruences between f and

CM-forms in the case N ′ and discuss how the character of these CM-forms can be

controlled under certain hypotheses.

Theorem 1.6 Let E/Q be a modular elliptic curve whose associated newform is f ∈
S2

(
Γ0(NE)

)
. Suppose im(ρE/Q,`) ⊂ N ′ for 3 < ` - NE. Then there exists a newform

g ∈ S2

(
Γ1(M)

)
which is induced from a grossencharacter on K and is congruent to f

modulo λ a prime above ` where M|NE is the Artin conductor of ρE/Q,`.

Theorem 1.7 Let E/Q be a modular elliptic curve whose associated newform is f ∈
S2

(
Γ0(NE)

)
and 16 - NE. Suppose im(ρE/Q,`) ⊂ N ′ for 3 < ` - NE. Then there

exists a newform g ∈ S2

(
Γ0(M)

)
which is induced from a grossencharacter on K and is

congruent to f modulo λ a prime above ` where M|NE is the Artin conductor of ρE/Q,`.

I would like to thank F. Momose for mentioning to me the connection between

elliptic curves with im(ρE/Q,`) ⊂ N ′ and grossencharacters on imaginary quadratic

fields (cf. also the paper [8] from which the case of prime power NE in Theorem 1.7

follows).

2 Congruences with CM-forms

2.1 Algebraic characters

Fix an algebraic closure Q of Q and an algebraic closure Q ` of Q`. Let K ⊂ Q ⊂ Q`

be a number field and denote by DK the set of embeddings of K into Q .

Let T/Q = ResK
Q (Gm/K) be the restriction of scalars of Gm/K to Q . This is a

commutative algebraic group over Q , isomorphic over Q to G[K:Q]
m , with the follow-

ing properties.
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1. T(Q) = K× and T(Q`) = (K ⊗Q`)
× =

∏
v|` Kv

2. For all σ ∈ DK , there is an algebraic character [σ] : T/Q → GL1 /Q such that

the composition

K× = T(Q) ⊂ T(Q)
[σ]−−−−→ GL1(Q) = Q

×

is given by the embedding σ.

3. Every algebraic homormorphism f : T/Q → GL1 /Q is of the form f =∏
σ∈DK

[σ]n(σ) where n(σ) ∈ Z. The element
∑

σ∈DK
n(σ)σ ∈ Z[DK] is called the

weight of f and completely determines f . Given a weight k ∈ Z[DK], let [k] denote

the algebraic homomorphism determined by k.

2.2 Grossencharacters of Type A0

Let K ⊂ Q be a number field. For a place v of K, let Kv be the completion of K at v,

πv a uniformizer of Kv, and Ov the ring of integers of Kv in the case v is a finite place.

Let JK be the idèles of K and CK = JK/K× the idèle class group. For a modulus m of

K let Um =
∏

v Um,v where

Um,v =

{
ker
(
O
×
v → (Ov/mOv)×

)
if v -∞

the connected component of 1 if v|∞

Let Em = ker(K× → JK/Um) denote the units congruent to 1 modulo m, and Cm =

C/UmK× be the ray class group of modulus m.

Let χ : CK → Q`
×

be a continuous character. This can be written in the form

χ =
∏

v χv where χv|O×v = 1 for all but finitely-many v. The homormorphism

χ : CK → Q`
x

is said to be locally algebraic of weight k ∈ Z[DK] if χ` =
∏

v|` χv

coincides with the algebraic character [−k] :
∏

v|` Kv = T(Q`) → GL1(Q`) = Q`
×

of weight −k on the subgroup
∏

v|` Um,v. We say χ has modulus m if χ` coincides

with [−k] on
∏

v|`Um,v and χv|Um,v
= 1 for v - `. The smallest modulus for χ is

called the conductor of χ.

When ` =∞, a locally algebraic character χ of modulus m and weight k coincides

with the notion of a grossencharacter of type A0 of modulus m and weight k.

Theorem 2.1 (Weil, [15]) Let χ be a grossencharacter of type A0. The extension

Q
(
χ(πv) | v -∞m

)
is a finite extension of Q called the field generated by χ.

Proposition 2.2 Let k ∈ Z[DK] be a weight. There exists a non-trivial grossencharac-

ter of type A0 of weight k and modulus m if and only if [k](Em) = 1. If this holds then

there are hm such grossencharacters where hm is the order of the class group Cm.

There is a natural grossencharacter of type A0 of conductor OK and weight∑
σ∈DK

σ. This is given by

ωK : CK → R
>0 ⊂ C

×

x 7→
∏

v

‖xv‖
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where ‖xv‖ = |xv|[Kv :Qp] and for p finite, |πv| = 1/p1/ev , and ev is the ramification

index of v|p. The character ωK is trivial on K× by the product formula.

2.3 Fundamental Characters

For v|` let Kv be a fixed algebraic closure of Kv. This fixes an algebraic closure kv of the

residue field kv. Let IKv
denote the inertia subgroup of GKv

and IKv ,t its tame quotient.

A character χ : IKv,t → kv
×

is called a tame character. For all q = `n, there is a

tame character

Θq−1 : IKv ,t → F
×
q ⊂ kv

×

called the fundamental tame character of level n which is surjective to F×q .

A tame character is said to have level n if its image is contained in F×q ⊂ kv
×

,

q = `n, but no smaller finite field. The fundamental tame character of level n has the

property that any character χ of level≤ n can be expressed as a power ofΘq−1.

Suppose χ is a tame character of level n and χ = Θa
q−1 with 0 ≤ a < q − 1.

Because of the assumption that χ has level n, not all possible a arise. We may write

the integer a uniquely in the form a = a0 + a1`+ · · ·+ an−1`
n−1 where 0 ≤ ai ≤ `−1

and hence χ = Θa0

q−1Θ
`a1

q−1 · · ·Θ
`n−1an−1

q−1 .

Let χ : GKab
v
→ kv

×
be a character and consider its restriction to IKab

v
. This restric-

tion factors to IKab
v,t

to yield a tame character χ which we also denote by χ. The local

class field homomorphism rv : K×v → GKab
v

induces an isomorphism k×v
∼= IKab

v,t
so

that the tame character χ has level ≤ n where q = `n = #kv. We denote by χ|k×v
the character on k×v obtained by precomposing the tame character χ with the local

class field homomorphism. Let DKv
denote the set of embeddings σv : Kv → Kv.

For each such embedding σv, let σv : kv → kv denote the associated embedding of

residue fields. We can therefore write the tame character in the form as above χ =∏
σv∈DKv

Θ
σva(σv)
q−1 where 0 ≤ a(σv) ≤ ` − 1. The element

∑
σv∈DKv

a(σv)σv ∈ Z[DKv
]

is called the optimal weight of χ at v.

A calculation in [13] shows that the composition

k×v
∼= IKab

v

Θq−1−−−−→ k×v

corresponds with the character x 7→ x−1.

3 Adjustment to Optimal Level and Weight

Proposition 3.1 Let Q ⊂ K ⊂ Q be an imaginary quadratic field whose set of em-

beddings to Q is denoted by DK = {1, τ}. Let χ : GK → F
×
`2 be a continuous character

with Artin conductor m and let χ̃ : CK → C× be its Teichmüller lift considered as a

continuous character of CK . Suppose that

1. ` ≥ 5 is inert in K
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2. χ|k×` = [1]
−1

.

Then there exists a grossencharacter χ of type A0 with conductor m and weight 1 and a

prime λ above ` in the field generated by χ̃ and χ such that χ̃(πv) ≡ χ(πv) (mod λ)

for all v -∞`m.

Proof By the global class field homomorphism rK : CK → GKab we may regard both

χ and χ̃ as continuous characters of CK and can write χ =
∏

v χv and χ̃ =
∏

v χ̃v

where χv and χ̃v are characters of K×v . By comparing χv and χ̃v place by place we see

that χ̃ has conductor m` and weight 0.

Let u ∈ Em = K× ∩Um. Since χ is trivial on K×, χ(u) = 1. On the other hand,

we also have χ|k×` (u) = [1]
−1

(u) = u−1 and χ|Um,v
(u) = 1 for v 6= `. Thus, we have

that u ≡ 1 (mod `). As K is imaginary quadratic and ` ≥ 5, this implies u = 1.

Since Em is trivial, there exists a grossencharacter φ of type A0 with modulus m

and weight 1. Write φ =
∏

v φv. As φ has weight 1, φ∞(z) = z. Let δ : JK → Q`
×

,

δ =
∏

v δv be defined as follows. For v - ∞`, let δv = φv, and define δ∞ = 1,

δ` = φv[1]−1. By construction, δ factors to a character of CK . Let δ : CK → F`
×

be

the reduction of δ modulo a prime λ ′ above ` of the field generated by δ (which is

the same as the field generated by δ), and let δ̃ : CK → C× be the Teichmüller lift of

δ.

The desired grossencharacter of type A0 is then χ = χ̃δ̃−1φ. The weight of χ is 1

and it evidently has modulus m`. In fact, χ has conductor m. Since χ` = χ̃`δ̃
−1
` φ` =

[̃1]
−1

[̃1]φ̃`
−1
φ` we see that χ` is trivial on O

×
` . Thus, χ has modulus m. To see

that χ has conductor precisely m, consider the character χ : CK → Q`
×

given by

χ = χ̃δ̃−1δ which has the same conductor as χ. Since χ reduces modulo λ to χ
having Artin conductor m, it follows that m divides the Artin conductor of χ as the

Artin conductor can only decrease under reduction modulo λ.

For v - ∞`m, χ(πv) = χ̃v(πv)δ̃−1
v (πv)φv(πv) = χ̃v(πv)φ̃−1

v (πv)φv(πv) ≡ χ̃v(πv)

(mod λ) where λ is a prime of the field generated by χ̃ and δ̃ above λ ′.

4 Proof of Theorem 1.6

Let E/Q be a modular elliptic curve whose associated newform is f ∈ S2

(
Γ0(NE)

)
.

Suppose im(ρE/Q,`) ⊂ N ′ for 3 < ` - NE. Then ρE/Q,`
∼= IndQ

K χ is induced from

a character χ : GK → F
×
`2 on the imaginary quadratic field K associated to such a

ρE/Q,`. Since ` - NE, the argument in [13] p. 317 shows that ` is inert in K.

Let us briefly recall the definition of the Serre’s optimal weight attached to this

particular ρE/Q,` [14]. Identifying GQ`
with a decomposition subgroup at ` of GQ , the

restriction of ρE/Q,` to IQ`
factors through its tame quotient IQ`,t and is semi-simple.

Since ` is unramified in K, IQ`
⊂ GK so that

ρE/Q,`|IQ`

∼=
(
χ 0

0 χ′

)

where χ ′(g) = χ(τ−1gτ ).
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Both χ and χ ′ are tame characters of level 2 so that χ` = χ′. Write χ = Θa0+`a1

q−1

where q = `2 = #k×v and 0 ≤ a0, a1 ≤ `− 1. Since ρE/Q,` is induced from either χ or

χ′, up to switching χ ′ for χ we may assume a > b. The optimal weight is defined as

k = 1 + a0 + `a1. Since ` - NE, Proposition 4 of [14] implies that k = 2 and so a0 = 1,

a1 = 0 in our situation. Thus, we see that χ|k×v = [1]
−1

.

Let χ̃ be the Teichmüller lift of χ. By Proposition 3.1, there exists a grossenchar-

acter χ of type A0 with conductor m and weight 1 such that χ(πv) ≡ χ̃(πv) (mod λ)

where λ is a prime above ` of the field generated by χ̃ and χ.

Let I(m) denote the group of fractional ideals of K prime to m. For an ideal

a ∈ I(m) denote by [a] the idèle
∏

v-∞m
πev

v associated to the ideal a =
∏

v-∞m
p

ev
v ,

where pv is the prime of K associated to the finite place v, and πv is any choice of

uniformizer for Kv.

Theorem 4.1 (Hecke) Let K ⊂ Q be an imaginary quadratic field with discriminant

dK and let DK = {1, τ} denote its embeddings into Q . Let χ be a grossencharacter of

type A0 on K with conductor m and weight k = u · 1 ∈ Z[DK], u > 0. Consider g(z) =∑
a∈I(m) χ([a])q(z)NK (a) where q(z) = e2πiz. Then g is a newform on Su+1

(
Γ0(M), ξ

)

where M = NK(m)|dK | and ξ : (Z/MZ)× → C× is defined by ξ = εK
χ◦Ver
ωu

Q

. Here

εK : CQ → {±1} is the character defining K and Ver : CQ → CK is the Verlagerung

map.

Proof cf. Theorem 4.8.2 [7] (but note Miyake normalizes his grossencharacters so

they are unitary)

Let g(z) =
∑

a∈I(m) χ([a])q(z)NK (a) ∈ S2

(
Γ1(M)

)
be the newform constructed

from χ as in the theorem above. Let p - `M be a prime and Fr p ∈ GQ a Frobenius

element at p. If p is inert in K, then Fr p /∈ GK so that ap( f ) ≡ tr ρE/Q,`(Fr p) ≡
tr(IndQ

K χ)(Fr p) ≡ 0 = ap(g) (mod λ). If p is split in K with vi |p being the two

places above p, then Fr p ∈ GK so that ap( f ) ≡ tr ρE/Q,`(Fr p) ≡ tr(IndQ

K χ)(Fr p) ≡
χ(Fr p)+χ(τ Fr p τ

−1) ≡ χ(πv1
)+χ(πv2

) ≡ χ(πv1
)+χ(πv2

) = ap(g) (mod λ). Thus,

ap( f ) ≡ ap(g) (mod λ) for p - `M.

Lemma 4.2 Let ` be a prime which is inert in an imaginary quadratic field K ⊂ Q

with its set of embeddings denoted by DK = {1, τ}. Let χ : GK → F
×
`2 be a character

with Artin conductor m(χ) prime to ` and suppose ρ = IndQ

K χ is irreducible. If we

denote by N(ρ) the Artin conductor of ρ, then

N(ρ) = (dK)NK

(
m(χ)

)
.

Proof Let χ̃ : GK → L× ⊂ C×, L = Q(ζn), n = `2 − 1 be the Teichmüller lift

of χ, and let ρ̃ = IndQ

K χ̃. By [12] VI.3 Proposition 6, N(ρ̃) = (dK)NK

(
m(χ̃)

)
=

(dK)`2NK m(χ).
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Let us compare N(ρ) =
∏

p 6=` pep and N(ρ̃) =
∏

p 6=` pẽp (as ` - N(ρ̃)). The

quantities ep and ẽp are defined as

ep =

∞∑

i=0

#ρ(Gp,i)

#ρ(Gp,0)
(2− dim ρGp,i )

ẽp =

∞∑

i=0

#ρ̃(Gp,i)

#ρ̃(Gp,0)
(2− dim ρ̃Gp,i )

where Gp,i denotes the i-th ramification group of a decomposition group at p, in-

dexed so that Gp,0 is the inertia subgroup at p.

Our aim is to show that N(ρ) is the prime to `-part of N(ρ̃) and hence equal

to N(ρ̃) = (dK)NK

(
m(χ)

)
. It suffices from the definitions of ep and ẽp to show

that dim ρH
= dim ρ̃H for any given subgroup H of GQ . Let Ṽ = L ⊕ Lτ be the

representation space of ρ̃ and let Λ = OL ⊕ OLτ be the natural GQ -invariant lattice

lying inside Ṽ . For any prime λ above ` of L, the F`2 -vector spaceΛ/λΛ is isomorphic

to ρ.

If H is a given subgroup of GQ , then we see from the description of ρ as a reduction

of ρ̃ that dim ρ̃H ≤ dim ρH . To show equality, we first show that given a non-zero

v ∈ V
H

it is possible to find a lift ṽ ∈ ΛH , i.e. ṽ ∈ ΛH , ṽ ≡ v (mod λΛ). To do this

write v = x + yτ and let H1 = H ∩ GK and H2 = H ∩ τGK .

Suppose both x, y 6= 0. For every h ∈ H1, ρ(h)(v) = χ(h)x +χ ′(h)yτ = x + yτ =
v. It follows that χ(h) = χ ′(h) = 1 for all h ∈ H1, and hence ρ̃(h) = 1 for all

h ∈ H1 so that any lift of v is invariant under h ∈ H1. For every h = τσ ∈ H2,

ρ(h)(v) = χ(σ)y + χ ′(σ)xτ = x + yτ = v. Thus, χ(σ)y = x and χ ′(σ)x = y for

all h = τσ ∈ H2. Note this implies that χ(σ), χ ′(σ), χ̃(σ), χ̃ ′(σ) are constant as

h = τσ varies in H2. Let ỹ ∈ OL be any lift of y. Define x̃ = χ̃(σ) ỹ and ṽ = x̃ + ỹτ .

Then also χ̃ ′(σ)x̃ = ỹ, and hence ρ̃(h)(ṽ) = ṽ for all h ∈ H2.

Suppose one of x, y = 0. If there exists an element h = τσ ∈ H2, then arguing

as above, we have that χ(σ)y = x and χ ′(σ)x = y. But then implies both x, y = 0

contradicting v 6= 0. Hence, we must have H ⊂ GK . Again, arguing as above, we see

there is a lift ṽ of v in ΛH .

The equality dim ρH
= dim ρ̃H now follows by picking a lift as above for each

element of a basis of V
H

to form a basis for Ṽ H of the same size.

From the above lemma, it follows that M = NK(m)|dK | is the Artin conductor of

ρE/Q,` which divides NE.

5 Proof of Theorem 1.7

In this section, we show that the grossencharacter χ used to prove Theorem 1.6 can

adjusted (in certain situations) so that it has the additional property that the character

ξ : (Z/MZ)× → C× of the associated newform g(z) =
∑

a∈I(m) χ([a])q(z)NK (a) is

trivial.

The Verlagerung map Ver : CQ → CK is defined by Ver =
∏

p Ver p, where Ver p is

the natural map Q
×
p → (K ⊗ Qp)× (here p = ∞ is included). By Theorem 4.1, the
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character ξ is given by the formula ξ = εK
χ◦Ver
ωu

Q

. If χ is a grossencharacter on K of

weight k = a0 +a1τ and modulus m, thenχ◦Ver is a grossencharacter on Q of weight

a0 + a1 and modulus NK (m). Thus, the expression for ξ is indeed a grossencharacter

of Q of weight 0 and modulus M and hence factors to CQ,M
∼= (Z/MZ)×.

Proposition 5.1 Let H ⊂ G be finite abelian groups. Let v be the unique valuation

of Q` extending that of Q`. Suppose f : H → Q`
×

is a character such that such that

v
(

f (h)− 1
)
> 0 for all h ∈ H. Then there exists a character f ′ : G→ Q`

×
extending

f such that v
(

f ′(g)− 1
)
> 0 for all g ∈ G.

Proof The main idea of the proof is to mimic the proof of Baer’s criterion (cf. [3]).

We shall write the abelian groups H ⊂ G additively. The first step is to show the

following intermediate result.

Let f : mZ → Q`
×

be a homomorphism such that f (m) is a root of unity and

v
(

f (m) − 1
)
> 0. Then there exists a homomorphism f : Z → Q `

×
extending f

such that f (1) is a root of unity and v
(

f (1)− 1
)
> 0. To show that f exists, choose

a root of unity x ∈ Q`
x

such that xm = f (m). Let L = Q`(x), with λ|` the unique

primes of L, Q` corresponding to the restrictions of v to these fields. Let x be the

reduction of x modulo λ and let x̃ denote the Teichmüller lift of this reduction to

Q`
×

. Since xm = f (m) ≡ 1 (mod λ), we see that x̃m = 1, so x̃ is an m-th root of

unity in Q`. Now, (x/x̃)m is also equal to f (m) but x/x̃ is congruent to 1 modulo λ.

We define f by f (1) = x/x̃.

Let f : H → Q`
×

be given such that v
(

f (h)−1
)
> 0 for all h ∈ H. There exists a

maximal extension f : H → Q`
×

extending f : H → Q `
×

such that v
(

f (h)−1
)
> 0

for all h ∈ H. If H = G, then we are done. If H is strictly contained in G, then let

a ∈ G such that a /∈ H. Consider the ideal a = {r ∈ Z : ra ∈ H} of Z. We define

a homomorphism f0 : a → Q`
×

by f0(r) = f (ra). By the intermediate result above,

there is an extension f 0 : Z → Q`
×

such that v
(

f 0(1) − 1
)
> 0. Let u = f 0(1). We

now define f ′(x + ra) = f (x) · ur , where x ∈ H, and r ∈ Z. This is well-defined

since if x + ra = 0, then r ∈ a, and hence f (x) · ur = f (x) · f (ra) = f (x + ra) = 0.

Now, f ′ extends f to H ′ = 〈H, a〉 still keeping the property v
(

f ′(h ′) − 1
)
> 0 for

all h ′ ∈ H ′, contradicting the maximality of f .

Let Ver : CQ,M → CK,m be the homomorphism induced by Ver on ray class groups.

Corollary 5.2 Let ξ : CQ,M → C× be a character such that ξ is trivial on the kernel of

Ver and ξ ≡ 1 (mod λ) for λ a prime above ` of the field generated by ξ. Then there

exists a character ψ : CQ,m → C× such that ψ ◦ Ver = ξ and ψ ≡ 1 (mod λ).

Let χ be as in the proof of Theorem 1.6 and let ξ = εK
χ◦Ver
ωQ

. Assume ξ−1 satisfies

the requirements of the corollary above and letψ be the character extending the char-

acter ξ−1 from the corollary. The character χ ′ = χψ also satisfies the requirements
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for Theorem 1.6, but now the character of the associated newform g ′ becomes

ξ ′ = εK
χψ ◦ Ver

ωQ

= εK
χ ◦ Ver

ωQ

ψ ◦ Ver = ξξ−1
= 1.

Since ρ f ,`
∼= ρg,λ (mod λ), it follows that ξ ≡ 1 (mod λ) as the character of f is

trivial. Thus, to prove Theorem 1.7, we need only verify that ξ is trivial on the kernel

of Ver.

Let πN : CQ → CQ,M denote the quotient map. Let x ∈ CQ such that Ver
(
πN(x)

)

= 1. This means that Ver(x) = u·k ∈ UK,m ·K×. Now, χ(u·k) = χ(u) = χ∞(u∞) =

u∞. On the other hand, ωQ = ω
1/2
K and ωK(u · k) = ωQ (u) = ωK,∞(u∞) = u2

∞.

Hence, χ◦Ver
ωQ

considered as a character of CQ,M is trivial on the kernel of Ver.

Thus, it remains to show that εK is trivial on the kernel of Ver. The class group

CQ,M
∼= (Z/MZ)×. Given an element g ∈ CQ,M , there exist infinitely many primes

q such that q = g (mod M) by the Cheboterov density theorem. The character εK

considered as a character of CQ,M can then be described by q 7→ ( dK

q
). Let g ∈ CQ,M

be such that Ver(g) = 1 and let us represent g = q for an odd prime q. The property

Ver(q) = 1 implies that q ≡ 1 (mod p) for every prime p|NK(m).

Assume now that 2 - dK so that dK ≡ 1 (mod 4) is square-free. From [13]

Section 5.8, we deduce that

1. The character εK = εE/Q,` is unramified outside p|NE because of the condition

3 < ` - NE.

2. Furthermore, if p - dK , then p2|NE.

Thus, since dK is square-free, it follows that if p|dK , then p|NE/dK . But then

p|NK(m) as only semi-stable primes can be stripped from NE (cf. [14] Section 4.6).

Thus, we have

εK (q) =
( dK

q

)
= (−1)

q−1
2

dK−1

2

( q

dK

)
= 1

as dK ≡ 1 (mod 4) and q ≡ 1 (mod p) for each p|NK(m). Given the following

lemma, Theorem 1.7 is now proved.

Lemma 5.3 Let E/Q be an elliptic curve with conductor NE and suppose im(ρE/Q,`) ⊂
N ′ for ` odd. Let K be the imaginary quadratic field associated to such ρE/Q,`. If 16 - NE

then 2 - dK .

Proof Let Φ2 = ρE/Q,`(I2) be the image of inertia at 2. Then Φ2 can be considered

as a subgroup of SL2(F3) with order restricted to 1, 2, 3, 4, 6, 8, 24 [13]. If #Φ2 =

1, 2, 3, 6, then under the assumption ` odd, we have that 2 - dK by [13] Section 5.8.

In fact, if #Φ2 = 24, then 2 - dK as SL2(F3) cannot be embedded into the normalizer

of a non-split Cartan subgroup N ′.

If #Φ2 = 4 and 2|dK then #ρE/Q,`(G2,0) = #ρE/Q,`(G2,1) = 4 which implies the

Artin exponent ep of ρE/Q,` is ≥ 4. Similarly, if #Φ2 = 8, then also ep ≥ 4.
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6 Conclusions

It is known that SN ′

Q contains the primes 2, 3, 5, 7, 11. For instance, the modular

curves X(`)/N ′ (which classify up to twist those E/Q with ` ∈ SN ′

E/Q
) are isomorphic

to P1/Q in the cases ` = 3, 5, 7. It is possible to give explicit equations for such

elliptic curves [2]. On the other hand, X(11)/N ′ is the elliptic curve 121D which has

rank 1 so there are infinitely-many E/Q (non-isomorphic over Q) with 11 ∈ SN ′

E/Q
.

Explicit examples of such elliptic curves seem to be unknown however.

A naive search among elliptic curves E/Q with integral j-invariant having abso-

lute value less than 800, 000 only give rise to the primes 2, 3, 5 in SN ′

Q ∪ SN
Q . It would

be interesting to gather further computational data regarding the sets SN
Q and SN ′

Q es-

pecially in relation to congruence primes. For instance, the following is an example

illustrating the theorems shown in this paper.

Consider the elliptic curve 4176N = E/Q : y2 = x3 − 3105x + 139239 from Cre-

mona’s tables [4]. Its discriminant, j-invariant, and conductor are ∆ = −2439295,

j = −10512288000/20511149 = 283353233/295, and N = 4176 = 243229, respec-

tively. Because the j-invariant is of the form 125 t(2t+1)3(2t2+7t+8)3

(t2+t−1)5 for t = −4/5, the

explicit parametrization of X(5)/N ′ in [2] implies that 5 ∈ SN ′

E/Q
. Since E/Q is semi-

stable at 29 and the exponent of 29 in∆ is divisible by 5, by Ribet’s theorem [11], ρ`
is modular of level 144 = 2432. Indeed, there is a newform g at level 144 which is

congruent modulo 5 to the newform f at level 4176 = 144 · 29 attached to E/Q . The

first few fourier coefficients ap for p prime are given below (for p dividing the level,

the signs of the action of the Atkin-Lehner involution W p are given).

ap(g) = [−,+, 0, 4, 0, 2, 0,−8, 0, 0, 4,−10, 0,−8, 0, 0, . . .

ap( f ) = [−,+, 0,−1,−5,−3, 5, 2, 0,+,−6, 10, 10, 2, . . .

The newform g corresponds to the isogeny class of elliptic curves 144A which

have complex multiplication by
√
−3, so g is induced from a grossencharacter on the

imaginary quadratic field Q(
√
−3).
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deuxième edition, 1968.

[13] , Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(1972),
259–331.

[14] , Sur les représentations modulaires de degré 2 de Gal(Q/Q). Duke Math. J. (1) 54(1987),
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