No CrossRef data available.
Article contents
Structure of Certain Periodic Rings
Published online by Cambridge University Press: 20 November 2018
Abstract
Let R be a periodic ring, N the set of nilpotents, and D the set of right zero divisors of R. Suppose that (i) N is commutative, and (ii) every x in R can be uniquely written in the form x = e + a, where e2 = e and a ∊ N. Then N is an ideal in R and R/N is a Boolean ring. If (i) is satisfied but (ii) is now assumed to hold merely for those elements x ∊ D, and if 1 ∊ R, then N is still an ideal in R and R/N is a subdirect sum of fields. It is further shown that if (i) is satisfied but (ii) is replaced by: "every right zero divisor is either nilpotent or idempotent," and if 1 ∊ R, then N is still an ideal in R and R/N is either a Boolean ring or a field.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1985