Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T12:28:37.716Z Has data issue: false hasContentIssue false

Regular Elliptic Classes and the Stable Relative Trace Formula

Published online by Cambridge University Press:  20 November 2018

K. F. Lai*
Affiliation:
School of Mathematics and Statistics University of Sydney Sydney, N.S.W. 2006 Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the relative trace formula of a reductive group over an algebraic number field. Following Langlands we stabilize the geometric side of the relative trace formula contributed by the elliptic regular double cosets.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1992 

References

1. Arthur, J., A trace formula for reductive groups I, Duke Math. J. 45(1978), 911952, II, Compositio Math. 40(1980), 87121.Google Scholar
2. Clozel, L., The fundamental lemma for stable base change, preprint.Google Scholar
3. Flicker, Y. Z., Relative trace formula and simple algebras, Proc. A.M.S. 99(1987), 421426.Google Scholar
4. Jacquet, H. and Lai, K. F., A relative trace formula, Compositio Math. 54(1985), 243301.Google Scholar
5. Kottwitz, R. E., Stable trace trace formula: cuspidal tempered terms, Duke Math. J. 51( 1984), 611-650.Google Scholar
6. Kottwitz, R. E., Stable trace trace formula: elliptic singular terms, Math. Ann. 275(1986), 365399.Google Scholar
7. Kottwitz, R. E., Base change for unit elements of Hecke algebras, Compositio Math. 60(1986), 237250.Google Scholar
8. J.-Labesse, P. and Langlands, R. P., L-indistinguishability forSL(2), J. Canad. Math. 31(1979), 726785.Google Scholar
9. Lai, K. F., On a relative trace formula for reductive groups, preprint.Google Scholar
10. Langlands, R. P., Les debuts d'une formule des traces stable, Publ. Math, de l'Université Paris VII, 13, 1983.Google Scholar
11. Langlands, R. P., Stable conjugacy: definitions and lemmas, J. Canad. Math. 31(1979), 700725.Google Scholar
12. Langlands, R. P., On the zeta-function of some simple Shimura varieties, J. Canad. Math. 31(1979), 11211216.Google Scholar
13. Langlands, R. P., Base change for GL(2), Annals of Math. Study 96(1980).Google Scholar
14. Langlands, R. P. and Shelstad, D., On the definition of transfer factors, Math. Ann. 278(1987), 219271.Google Scholar
15. Poitou, G., Cohomologie galoisienne des modules finis, Seminare de l'Institute de Mathématiques de Lille, Paris (1967).Google Scholar
16. Shelstad, D., L-indistinguishability for real groups, Math. Ann. 259(1982), 385430.Google Scholar
17. Shelstad, D., Orbital integrals, endoscopic groups and L-indistinguishability, Publ. Math. Univ. Paris VII, 15(1983).Google Scholar
18. Shelstad, D., Embeddings of L-groups, Canad. J. Math. 33(1981), 513558.Google Scholar