No CrossRef data available.
Article contents
Regular Elliptic Classes and the Stable Relative Trace Formula
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We study the relative trace formula of a reductive group over an algebraic number field. Following Langlands we stabilize the geometric side of the relative trace formula contributed by the elliptic regular double cosets.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1992
References
1. Arthur, J., A trace formula for reductive groups I, Duke Math. J. 45(1978), 911–952, II, Compositio Math. 40(1980), 87–121.Google Scholar
3. Flicker, Y. Z., Relative trace formula and simple algebras, Proc. A.M.S. 99(1987), 421–426.Google Scholar
4. Jacquet, H. and Lai, K. F., A relative trace formula, Compositio Math. 54(1985), 243–301.Google Scholar
5. Kottwitz, R. E., Stable trace trace formula: cuspidal tempered terms, Duke Math. J. 51( 1984), 611-650.Google Scholar
6. Kottwitz, R. E., Stable trace trace formula: elliptic singular terms, Math. Ann. 275(1986), 365–399.Google Scholar
7. Kottwitz, R. E., Base change for unit elements of Hecke algebras, Compositio Math. 60(1986), 237–250.Google Scholar
8. J.-Labesse, P. and Langlands, R. P., L-indistinguishability forSL(2), J. Canad. Math. 31(1979), 726–785.Google Scholar
10. Langlands, R. P., Les debuts d'une formule des traces stable, Publ. Math, de l'Université Paris VII, 13, 1983.Google Scholar
11. Langlands, R. P., Stable conjugacy: definitions and lemmas, J. Canad. Math. 31(1979), 700–725.Google Scholar
12. Langlands, R. P., On the zeta-function of some simple Shimura varieties, J. Canad. Math. 31(1979), 1121–1216.Google Scholar
14. Langlands, R. P. and Shelstad, D., On the definition of transfer factors, Math. Ann. 278(1987), 219–271.Google Scholar
15. Poitou, G., Cohomologie galoisienne des modules finis, Seminare de l'Institute de Mathématiques de Lille, Paris (1967).Google Scholar
16. Shelstad, D., L-indistinguishability for real groups, Math. Ann. 259(1982), 385–430.Google Scholar
17. Shelstad, D., Orbital integrals, endoscopic groups and L-indistinguishability, Publ. Math. Univ. Paris VII, 15(1983).Google Scholar
You have
Access