Published online by Cambridge University Press: 20 November 2018
We make some elementary observations concerning subcritically Stein fillable contact structures on 5-manifolds. Specifically, we determine the diffeomorphism type of such contact manifolds in the case where the fundamental group is finite cyclic, and we show that on the 5-sphere, the standard contact structure is the unique subcritically fillable one. More generally, it is shown that subcritically fillable contact structures on simply connected 5-manifolds are determined by their underlying almost contact structure. Along the way, we discuss the homotopy classification of almost contact structures.