Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T10:43:17.577Z Has data issue: false hasContentIssue false

On Pisier’s inequality for UMD targets

Published online by Cambridge University Press:  15 June 2020

Alexandros Eskenazis*
Affiliation:
Institut de Mathématiques de Jussieu, Sorbonne Université, 4, Place Jussieu, 75252 Paris Cedex 05, France

Abstract

We prove an extension of Pisier’s inequality (1986) with a dimension-independent constant for vector-valued functions whose target spaces satisfy a relaxation of the UMD property.

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author was supported by a postdoctoral fellowship of the Fondation Sciences Mathématiques de Paris.

References

Bourgain, J., Vector-valued singular integrals and the ${H}^1$ -BMO duality. In: Probability theory and harmonic analysis (Cleveland, OH, 1983), Monogr. Textbooks Pure Appl. Math., 98, Dekker, New York, 1986, pp. 119.Google Scholar
Eskenazis, A., Geometric inequalities and advances in the ribe program. Ph.D. thesis, Princeton University, 2019.Google Scholar
Garling, D. J. H., Random martingale transform inequalities. In: Probability in Banach spaces 6 (Sandbjerg, 1986), Progr. Probab., 20, Birkhäuser Boston, Boston, MA, 1990, pp. 101119.CrossRefGoogle Scholar
Hytönen, T. and Naor, A., Pisier’s inequality revisited. Studia Math. 215(2013), 221235.CrossRefGoogle Scholar
Ivanisvili, P., van Handel, R., and Volberg, A., Rademacher type and Enflo type coincide. Ann. of Math. Preprint, 2020. https://arxiv.org/abs/2003.06345, 2020.Google Scholar
Khintchine, A., Über dyadische Brüche. Math. Z. 18(1923), 109116.CrossRefGoogle Scholar
Naor, A. and Schechtman, G., Remarks on non linear type and Pisier’s inequality. J. Reine Angew. Math. 552(2002), 213236.Google Scholar
Pisier, G., Sur les espaces de Banach qui ne contiennent pas uniformément de ${l}_n^1$ . C. R. Acad. Sci. Paris Sér. A-B 277(1973), A991–A994.Google Scholar
Pisier, G., Holomorphic semigroups and the geometry of Banach spaces. Ann. of Math. (2) 115(1982), 375392.CrossRefGoogle Scholar
Pisier, G., Probabilistic methods in the geometry of Banach spaces. In: Probability and analysis (Varenna, 1985), Lecture Notes in Math., 1206, Springer, Berlin, 1986, pp. 167241.CrossRefGoogle Scholar
Pisier, G., Martingales in Banach spaces. Cambridge Studies in Advanced Mathematics, 155, Cambridge University Press, Cambridge, 2016.Google Scholar
Qiu, Y., On the UMD constants for a class of iterated ${L}_p\left({L}_q\right)$ spaces. J. Funct. Anal. 263(2012), 24092429.CrossRefGoogle Scholar
Stein, E. M., Topics in harmonic analysis related to the Littlewood-Paley theory. Ann. Math. Studies, 60 (Princeton University Press, Princeton, N.J), University of Tokyo Press, Tokyo, 1970.Google Scholar
Talagrand, M., Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis’ graph connectivity theorem. Geom. Funct. Anal. 1993(3), 295314.Google Scholar