We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
[1]
Beurling, A., The collected works of Arne Beurling. In: Carleson, L., Malliavin, P., Neuberger, J., and Wermer, J. (eds), Complex analysis, Contemporary Mathematicians, 1. Birkhäuser Boston, Inc., Boston, MA, 1989.Google Scholar
[2]
Bolmarcich, J., The behavior of the maximum value of finite sections of a class of bilinear forms. J. Math. Anal. Appl.56(1976), no. 1, 84–101.CrossRefGoogle Scholar
[3]
Brevig, O. F., Perfekt, K. M., Seip, K., Siskakis, A. G., and Vukotić, D., The multiplicative Hilbert matrix. Adv. Math.302(2016), 410–432.CrossRefGoogle Scholar
[4]
de Bruijn, N. G. and Wilf, H. S., On Hilbert’s inequality in
$n$
dimensions. Bull. Amer. Math. Soc.68(1962), 70–73.CrossRefGoogle Scholar
[5]
Hardy, G. H., Littlewood, J. E., and Pólya, G., Inequalities. Cambridge University Press, Cambridge, 1934.Google Scholar
[6]
Miheisi, N. and Pushnitski, A., A Helson matrix with explicit eigenvalue asymptotics. J. Funct. Anal.275(2018), no. 4, 967–987.CrossRefGoogle Scholar
[7]
Perfekt, K. M. and Pushnitski, A., On Helson matrices: moment problems, non-negativity, boundedness, and finite rank. Proc. Lond. Math. Soc. (3)116(2018), no. 1, 101–134.CrossRefGoogle Scholar
[8]
Perfekt, K. M. and Pushnitski, A., On the spectrum of the multiplicative Hilbert matrix. Ark. Mat.56(2018), no. 1, 163–183.CrossRefGoogle Scholar
[9]
Shields, A., An analogue of the Fejér-Riesz theorem for the Dirichlet space. In: Conference on harmonic analysis in honor of Antoni Zygmund, (Chicago, Ill., 1981), Wadsworth Mathematics Series, I, II, Wadsworth, Belmont, CA, 1983, pp. 810–820.Google Scholar
[10]
Widom, H., On the eigenvalues of certain hermitian operators. Trans. Amer. Math. Soc.88(1958), 491–522.CrossRefGoogle Scholar
[11]
Wilf, H. S., Finite sections of some classical inequalities. Springer, Heidelberg, 1970.10.1007/978-3-642-86712-5CrossRefGoogle Scholar