Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T11:28:31.457Z Has data issue: false hasContentIssue false

A Note on Henselian Valuation Rings

Published online by Cambridge University Press:  20 November 2018

Otto Endler*
Affiliation:
Mathematisches Institut der, Universitat Bonn (Germany)
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let K be a field and Ka its algebraic closure. A valuation a ring A of K is called henselian, if there is only one valuation ring C of Ka which lies over A (i.e. such that C ∩ K = A) or, equivalently, if Hensel's Lemma is valid for K, A (see [5], F). In the following, we shall consider only rank one valuation rings.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1968

References

1. Artin, E. und Schreier, O., Eine Kennzeichnung der reell abgeschlossenen Körper. Abh. Math. Sem. Hamburg 5 (1927), 225-231.Google Scholar
2. Endler, O., Bewertungstheorie, . Unter Benutzung einer Vorlesung von W. Krull. (vol. I, II). (Bonner Math. Schriften Nr. 15, 1963).Google Scholar
3. Kaplansky, I. and Schilling, O.F.G., Some remarks on relatively complete fields. Bull. Amer. Math. Soc. 48 (1942), 744-747.Google Scholar
4. Ribenboim, P., A short note on henselian fields. Math. Ann. 173 (1967), 83-88.Google Scholar
5. Ribenboim, P., Théorie des valuations. (Sém. Math. Sup., Univ. Montréal, 1964).Google Scholar