Published online by Cambridge University Press: 20 November 2018
A classical theorem of Rogers states that for any convex body $K$ in $n$-dimensional Euclidean space there exists a covering of the space by translates of $K$ with density not exceeding $n\,\log \,n\,+\,n\,\log \,\log \,n\,+\,5$. Rogers’ theorem does not say anything about the structure of such a covering. We show that for sufficiently large values of $n$ the same bound can be attained by a covering which is the union of $O\left( \log \,n \right)$ translates of a lattice arrangement of $K$.