No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
We prove that if the Fourier transform of a compactly supported measure is in ${{L}^{2}}$ of a half-space, then the measure is absolutely continuous to Lebesgue measure. We then show how this result can be used to translate information about the dimensionality of a measure and the decay of its Fourier transform into geometric information about its support.