No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
For ${{C}^{*}}$-algebras $\mathcal{A}$ of real rank zero, we describe linear maps $\phi $ on $\mathcal{A}$ that are surjective up to ideals $\mathcal{J}$, and $\text{ }\pi \text{ (}A\text{)}$ is invertible in $\mathcal{A}/\mathcal{J}$ if and only if $\text{ }\pi \text{ (}\phi (A))$ is invertible in $\mathcal{A}/\mathcal{J}$, where $A\,\in \,\mathcal{A}$ and $\text{ }\pi \text{ }\text{:}\mathcal{A}\to \mathcal{A}\text{/}\mathcal{J}$ is the quotient map. We also consider similar linear maps preserving zero products on the Calkin algebra.