Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T07:22:01.466Z Has data issue: false hasContentIssue false

The Grothendieck Trace and the de Rham Integral

Published online by Cambridge University Press:  20 November 2018

Pramathanath Sastry
Affiliation:
University of Toronto at Mississauga Mississauga, Ontario, email: [email protected]
Yue Lin L. Tong
Affiliation:
Purdue University West Lafayette, IN USA, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

On a smooth $n$-dimensional complete variety $X$ over $\mathbb{C}$ we show that the trace map ${{\bar{\theta }}_{X}}\,:\,{{H}^{n}}(X,\,\Omega _{X}^{n})\,\to \,\mathbb{C}$ arising from Lipman's version of Grothendieck duality in $\left[ \text{L} \right]$ agrees with

$${{(2\pi i)}^{-n}}{{(-1)}^{n(n-1)/2}}\,\int_{X}{:\,H_{DR}^{2n}\,(X,\,\mathbb{C})\,\to \,\mathbb{C}}$$

under the Dolbeault isomorphism.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2003

References

[C] Conrad, B., Grothendieck duality and base change. Lecture Notes in Math. 1750, Springer-Verlag, New York, 2000.Google Scholar
[C1] Conrad, B., Clarifications and corrections to .Grothendieck duality and base change.. Preprint, www-math.mit.edu/.dejong.Google Scholar
[C2] Conrad, B., More Examples. Preprint, www-math.mit.edu/.dejong.Google Scholar
[D] Deligne, P., Intégration sur un cycle évanescent. Invent.Math. 76 (1983), 129143.Google Scholar
[dR] de Rham, G., Variétés différentiables. Hermann, Paris, 1955.Google Scholar
[GH] Griffiths, P. and Harris, J., Principles of Algebraic Geometry. John Wiley & Sons, New York, 1978.Google Scholar
[G1] Grothendieck, A., Théorèmes de dualité pour les faisceaux algébriques cohérents. Séminaire Bourbaki 149, May 1957.Google Scholar
[G2] Grothendieck, A., Rev.etements étales et groupe fondamental. Lecture Notes in Math. 224, Springer-Verlag, Heidelberg, 1971.Google Scholar
[Ha] Hartshorne, R., Algebraic Geometry. Graduate Texts in Math. 52, Springer-Verlag, 1977.Google Scholar
[H] Harvey, F. R., Integral formulae connected by Dolbeault's isomorphism. Rice Univ. Studies 56 (1970), 7797.Google Scholar
[I] Iversen, B., Cohomology of sheaves. Universitext, Springer-Verlag, 1986.Google Scholar
[L] Lipman, J., Dualizing sheaves, differentials and residues on algebraic varieties. Astérisque 117, 1984.Google Scholar
[T] Tong, Y. L. L., Integral representation formulae and the Grothendieck residue symbol. Amer. J. Math. 95 (1973), 904917.Google Scholar
[TT] Toledo, D. and Tong, Y. L. L., A parametrix for ∂ and the Riemann-Roch in Čech theory. Topology 15 (1976), 273301.Google Scholar