Article contents
Gauss and Eisenstein Sums of Order Twelve
Published online by Cambridge University Press: 20 November 2018
Abstract
Let $q\,=\,{{p}^{r}}$ with
$p$ an odd prime, and
${{\mathbf{F}}_{q}}$ denote the finite field of
$q$ elements. Let
$\text{Tr}\,:\,{{\mathbf{F}}_{q}}\,\to \,{{\mathbf{F}}_{p}}$ be the usual trace map and set
${{\zeta }_{p}}\,=\,\exp (2\pi i/p)$. For any positive integer
$e$, define the (modified) Gauss sum
${{g}_{r}}(e)$ by
$${{g}_{r}}(e)=\underset{x\in {{\mathbf{F}}_{q}}}{\mathop{\sum }}\,\zeta _{p}^{\text{Tr}{{x}^{e}}}$$
Recently, Evans gave an elegant determination of ${{g}_{1}}(12)$ in terms of
${{g}_{1}}(3),\,{{g}_{1}}(4)$ and
${{g}_{1}}(6)$ which resolved a sign ambiguity present in a previous evaluation. Here I generalize Evans' result to give a complete determination of the sum
${{g}_{r}}(12)$.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2003
References
- 1
- Cited by