Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T12:01:59.707Z Has data issue: false hasContentIssue false

Factorisation of Two-variable p-adic L-functions

Published online by Cambridge University Press:  20 November 2018

Antonio Lei*
Affiliation:
Department of Mathematics and Statistics, Burnside Hall, McGill University, Montreal QC, H3A 0B9 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $f$ be a modular form that is non-ordinary at $p$. Loeffler has recently constructed four two-variable $p$-adic $L$-functions associated with $f$. In the case where ${{a}_{p}}\,=\,0$, he showed that, as in the one-variable case, Pollack’s plus and minus splitting applies to these new objects. In this article, we show that such a splitting can be generalised to the case where ${{a}_{p}}\ne 0$ using Sprung’s logarithmic matrix.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

References

[AV75] Amice, Y. and Vélu, J., Distributions p-adiques associées aux séries de Hecke. In: Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974), Astérisque, 2425, Soc. Math. France, Paris, 1975, pp. 119131.Google Scholar
[CB98] Coleman, R. and Edixhoven, B., On the semi-simplicity of the up-operator on modular forms.Math. Ann. 310 (1998), no 1, 119127. http://dx.doi.org/10.1007/s002080050140 Google Scholar
[Kim11] Kim, B. D., Two-variable p-adic L-functions of modular forms for non-ordinary primes. Preprint. http://homepages.ecs.vuw.ac.nz/_bdkim/BDKim-2011-1.pdf Google Scholar
[LLZ10] Lei, A., Loeffler, D., and Zerbes, S. L., Wach modules and Iwasawa theory for modular forms.Asian J. Math. 14 (2010), no. 4, 475528. http://dx.doi.org/10.4310/AJM.2010.v14.n4.a2 Google Scholar
[Loe13] Loeffler, D., p-adic integration on ray class groups and non-ordinary p-adic L-functions. arxiv:1304.4042, 2013.Google Scholar
[PR94] Perrin-Riou, B., Théorie d’Iwasawa des représentations p-adiques sur un corps local.Invent. Math. 115 (1994), no. 1, 81161. http://dx.doi.org/10.1007/BF01231755 Google Scholar
[Pol03] Pollack, R., On the p-adic L-function of a modular form at a supersingular prime.Duke Math. J. 118 (2003), no. 3, 523558. http://dx.doi.org/10.1215/S0012-7094-03-11835-9 Google Scholar
[Spr12a] Sprung, F., On pairs of p-adic analogues of the conjectures of Birch and Swinnerton-Dyer http://arxiv:1211.1352, 2012.Google Scholar
[Spr12b] Sprung, F., Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures.J. Number Theory 132 (2012), no. 7, 14831506. http://dx.doi.org/10.1016/j.jnt.2011.11.003 Google Scholar
[Viš76] Višik, M. M., Nonarchimedean measures associated with Dirichlet series.Mat. Sb. (N.S.) 99(141) (1976), no. 2, 248260, 296.Google Scholar