Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T06:42:03.618Z Has data issue: false hasContentIssue false

Endpoint Regularity of Multisublinear Fractional Maximal Functions

Published online by Cambridge University Press:  20 November 2018

Feng Liu
Affiliation:
College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China. e-mail: [email protected]
Huoxiong Wu
Affiliation:
School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, P. R. China. e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we investigate the endpoint regularity properties of the multisublinear fractional maximal operators, which include the multisublinear Hardy–Littlewood maximal operator. We obtain some new bounds for the derivative of the one-dimensional multisublinear fractional maximal operators acting on the vector-valued function $\overrightarrow{f}=({{f}_{1}},...,{{f}_{m}})$ with all ${{f}_{j}}$ being $BV$-functions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[1] Aldaz, J. M., Colzani, L., and Perez Lazaro, J., Optimal bounds on the modulus of continuity of the uncentered Hardy-Littlewood maximal function. J. Geom. Anal. 22(2012), no. 1,132-167. http://dx.doi.Org/10.1007/s12220-010-9190-8 Google Scholar
[2] Aldaz, J. M. and J.Perez Lazaro, Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities. Trans. Amer. Math. Soc. 359(2007), no. 5, 24432461. http://dx.doi.Org/10.1090/S0002-9947-06-04347-9 Google Scholar
[3] Barza, S. and Lind, M., A new variational characterization ofSobolev spaces. J. Geom. Anal. 25(2015), no. 4, 21852195. http://dx.doi.Org/10.1007/s12220-014-9508-z Google Scholar
[4] Carneiro, E. and Moreira, D., On the regularity of maximal operators, Proc. Amer. Math. Soc. 136 (2008), no. 12, 43954404. http://dx.doi.Org/10.1090/S0002-9939-08-09515-4 Google Scholar
[5] Carneiro, E. and Madrid, J., Derivative bounds for fractional maximal functions. Trans. Amer. Math. Soc., to appear. Google Scholar
[6] Carneiro, E. and E. Svaiter, B., On the variation of maximal operators of convolution type. J. Funct. Anal. 265(2013), 837865. http://dx.doi.Org/10.1016/j.jfa.2013.05.012 Google Scholar
[7] Hajlasz, P. and Maly, J., On approximate differentiability of the maximal function. Proc. Amer. Math. Soc. 138(2010), no. 1, 165174. http://dx.doi.Org/10.1090/S0002-9939-09-09971-7 Google Scholar
[8] Hajlasz, P. and Onninen, J., On boundedness of maximal functions in Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 29(2004), no. 1,167-176. Google Scholar
[9] Kinnunen, J., The Hardy-Littlewood maximal function of a Sobolev function. Israel J. Math. 100(1997), 117124. http://dx.doi.Org/10.1007/BF02773636 Google Scholar
[10] Kinnunen, J. and Lindqvist, P., The derivative of the maximal function. J. Reine Angew. Math. 503(1998), 161167. Google Scholar
[11] Kinnunen, J. and Saksman, E., Regularity of the fractional maximal function. Bull. London Math. Soc. 35(2003), no. 4, 529535. http://dx.doi.Org/10.1112/S0024609303002017 Google Scholar
[12] Kurka, O., On the variation of the Hardy-Littlewood maximal function. Ann. Acad. Sci. Fenn. Math. 40(2015), 109133. http://dx.doi.Org/10.5186/aasfm.2015.4003 Google Scholar
[13] Liu, F., Chen, T., and Wu, H., A note on the endpoint regularity of the Hardy-Littlewood maximal functions. Bull. Austra. Math. Soc. 94(2016), 121130. http://dx.doi.Org/1 0.101 7/S000497271 5001392 Google Scholar
[14] Liu, F. and Mao, S., On the regularity of the one-sided Hardy-Littlewood maximal functions. Czech. Math. J., to appear. Google Scholar
[15] Liu, F. and Wu, H., On the regularity of the multisublinear maximal functions. Canad. Math. Bull. 58(2015), no. 4, 808817. http://dx.doi.Org/10.4153/CMB-2014-070-7 Google Scholar
[16] Luiro, H., Continuity of the maixmal operator in Sobolev spaces. Proc. Amer. Math. Soc. 135(2007), no. 1, 243251. http://dx.doi.Org/1 0.1090/S0002-9939-06-08455-3 Google Scholar
[17] Luiro, H., On the regularity of the Hardy-Littlewood maximal operator on subdomains o/R”. Proc. Edinburgh Math. Soc. 53(2010), no. 1, 211237. http://dx.doi.Org/10.1017/S0013091507000867 Google Scholar
[18] Natanson, L. P., Theory of functions of a real variable. Frederick Ungar Publishing Co., New York, 1950. Google Scholar
[19] Tanaka, H., A remark on the derivative of the one-dimensional Hardy-Littlewood maximal function. Bull. Austral. Math. Soc. 65(2002), no. 2, 253258. http://dx.doi.Org/10.1017/S0004972700020293 Google Scholar