Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T01:32:29.171Z Has data issue: false hasContentIssue false

Convergence Rates of Cascade Algorithms with Infinitely Supported Masks

Published online by Cambridge University Press:  20 November 2018

Jianbin Yang
Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou, 310027, P. R. Chinae-mail: [email protected]; [email protected]
Song Li
Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou, 310027, P. R. Chinae-mail: [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the solutions of refinement equations of the form

$$\phi (x)\,=\,\sum\limits_{\alpha \in {{\mathbb{Z}}^{S}}}{a(\alpha )\,}\phi (Mx\,-\,\alpha ),$$

where the function $\phi $ is in ${{L}_{p}}({{\mathbb{R}}^{s}})(1\,\le \,p\,\le \,\infty )$, $a$ is an infinitely supported sequence on ${{\mathbb{Z}}^{s}}$ called a refinement mask, and $M$ is an $s\,\times \,s$ integer matrix such that ${{\lim }_{n\to \infty }}\,{{M}^{-n}}\,=\,0$. Associated with the mask $a$ and $M$ is a linear operator ${{\text{Q}}_{a,M}}$ defined on ${{L}_{p}}({{\mathbb{R}}^{s}})$ by ${{\text{Q}}_{a,M}}{{\phi }_{0}}\,:=\,{{\sum }_{\alpha \in {{\mathbb{Z}}^{s}}}}\,a(\alpha ){{\phi }_{0}}(M\,\cdot \,-\alpha )$. Main results of this paper are related to the convergence rates of ${{(\text{Q}_{a,M}^{n}{{\phi }_{o}})}_{n=1,2,\ldots }}$ in ${{L}_{p}}({{\mathbb{R}}^{s}})$ with mask $a$ being infinitely supported. It is proved that under some appropriate conditions on the initial function ${{\phi }_{0}}$, $\text{Q}_{a,M}^{n}{{\phi }_{0}}$ converges in ${{L}_{p}}({{\mathbb{R}}^{s}})$ with an exponential rate.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[1] Aldroubi, A. and Gröchenig, K., Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43(2001), no. 4, 585620. http://dx.doi.org/10.1137/S0036144501386986 Google Scholar
[2] Cavaretta, A. S., Dahmen, W., and Micchelli, C. A., Stationary subdivision. Mem. Amer. Math. Soc. 93(1991), no. 453.Google Scholar
[3] Chen, D.-R., Jia, R.-Q., and Riemenschneider, S. D., Convergence of vector subdivision schemes in Sobolev spaces. Appl. Comp. Harmon. Anal. 12(2002), no. 1, 128149. http://dx.doi.org/10.1006/acha.2001.0363 Google Scholar
[4] Cohen, A. and Ryan, R. D., Wavelets and multiscale signal processing. Applied Mathematics and Mathematical Computation, 11, Chapman & Hall, London, 1995.Google Scholar
[5] Daubechies, I. and Huang, Y., A decay theorem for refinable functions. Appl. Math. Lett. 7(1994), no. 4, 14. http://dx.doi.org/10.1016/0893-9659(94)90001-9 Google Scholar
[6] Han, B., The initial functions in a cascade algorithm. In: Wavelet analysis (Hong Kong, 2001), Ser. Anal. 1,World Sci. Publ., River Edge, NJ, 2002, pp. 154178.Google Scholar
[7] Han, B., Refinable functions and cascade algorithms in weighted spaces with Hölder continuous masks. SIAM J. Math. Anal. 41(2008), no. 1, 70102. http://dx.doi.org/10.1137/060661016 Google Scholar
[8] Han, B. and Jia, R.-Q., Multivariate refinement equations and convergence of subdivision schemes. SIAM J. Math. Anal. 29(1998), no. 5, 11771199. http://dx.doi.org/10.1137/S0036141097294032 Google Scholar
[9] Han, B. and Jia, R.-Q., Characterization of Riesz bases of wavelets generated from multiresolution analysis. Appl. Comput. Harmon. Anal. 23(2007), no. 3, 321345. http://dx.doi.org/10.1016/j.acha.2007.02.001 Google Scholar
[10] Han, B. and Shen, Z., Wavelets from the Loop scheme. J. Fourier Anal. Appl. 11(2005), no. 6, 615637. http://dx.doi.org/10.1007/s00041-005-5013-x Google Scholar
[11] Han, B. and Shen, Z., Wavelets with short support. SIAM J. Math. Anal. 38(2006), no. 2, 530556. http://dx.doi.org/10.1137/S0036141003438374 Google Scholar
[12] Herley, C. and Vetterli, M.,Wavelets and recursive filter banks. IEEE Trans. Signal Process. 41(1993), no. 8, 25362556.Google Scholar
[13] Jia, R. Q., Subdivision schemes in Lp spaces. Adv. Comput. Math. 3(1995), no. 4, 309341. http://dx.doi.org/10.1007/BF03028366 Google Scholar
[14] Jia, R. Q., Approximation properties of multivariate wavelets. Math. Comp. 67(1998), no. 222, 647665. http://dx.doi.org/10.1090/S0025-5718-98-00925-9 Google Scholar
[15] Jia, R. Q., Convergence rates of cascade algorithms. Proc. Amer. Math. Soc. 131(2003), no. 6, 17391749. http://dx.doi.org/10.1090/S0002-9939-03-06953-3 Google Scholar
[16] Jia, R. Q., Approximation with scaled shift-invariant spaces by quasi-projection operators. J. Approx. Theory 131(2004), no. 1, 3046. http://dx.doi.org/10.1016/j.jat.2004.07.007 Google Scholar
[17] Jia, R. Q. and Micchelli, C. A., Using the refinement equations for the construction of pre-wavelets. II. Powers of two. In: Curves and surfaces (Chamonix-Mont-Blanc, 1990), Academic Press, Boston, MA, 1991, pp. 209246.Google Scholar
[18] Lei, J., Jia, R. Q., and Cheney, E. W., Approximation from shift-invariant spaces by integral operators. SIAM. J. Math. Anal. 28(1997), no. 2, 481498. http://dx.doi.org/10.1137/S0036141095279869 Google Scholar
[19] Li, S., Characterization of smoothness of multivariate refinable functions and convergence of cascade algorithms of nonhomogeneous refinement equations. Adv. Comput.Math. 20(2004), no. 4, 311331. http://dx.doi.org/10.1023/A:1027373528712 Google Scholar
[20] Li, S., Convergence rates of vector cascade algorithms in Lp . J. Approx. Theory 137(2005), no. 1, 123142. http://dx.doi.org/10.1016/j.jat.2005.07.010 Google Scholar
[21] Li, S. and Pan, Y., Subdivisions with infinitely supported mask. J. Comput. Appl. Math. 214(2008), no. 1, 288303. http://dx.doi.org/10.1016/j.cam.2007.02.033 Google Scholar
[22] Li, S. and Pan, Y., Subdivision schemes with polynomially decaying masks. Adv. Comput. Math. 32(2010), no. 4, 487507. http://dx.doi.org/10.1007/s10444-009-9116-9 Google Scholar
[23] Li, S. and Yang, J., Vector refinement equations with infinitely supported masks. J. Approx. Theory 148(2007), no. 2, 158176. http://dx.doi.org/10.1016/j.jat.2007.03.004 Google Scholar
[24] Shen, Z., Refinable function vectors. SIAM J. Math. Anal. 29(1998), no. 1, 235250. http://dx.doi.org/10.1137/S0036141096302688 Google Scholar
[25] Strang, G. and Fix, G., A Fourier analysis of the finite element variational method. In: Constructive Aspects of Functional Analysis, Edizione Cremonese, Rome, 1973, pp. 795840.Google Scholar
[26] Sun, Q., Convergence of cascade algorithms and smoothness of refinable distributions. Chinese Ann. Math. Ser. B 24(2003), no. 3, 367386. http://dx.doi.org/10.1142/S0252959903000372 Google Scholar
[27] Unser, M. and Blu, T., Fractional splines and wavelets. SIAM Rev. 42(2000), no. 1, 4367. http://dx.doi.org/10.1137/S0036144598349435 Google Scholar
[28] Zhang, S. R., Refinable functions and subdivision schemes. Ph.D. Thesis, University of Alberta, 1998.Google Scholar