Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T19:10:24.340Z Has data issue: false hasContentIssue false

Constructive Complete Distributivity III

Published online by Cambridge University Press:  20 November 2018

Robert Rosebrugh
Affiliation:
Department of Mathematics and Computer Science Mount Allison University Sackville, New Brunswick
R. J. Wood
Affiliation:
Department of Mathematics, Statistics and Computing Science Dalhousie University Halifax, Nova Scotia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A complete lattice L is constructively completely distributive,(CCD)(L), if the sup map defined on down closed subobjects has a left adjoint. We characterize preservation of this property by left exact functors between toposes using a "logical comparison transformation". The characterization is applied to (direct images of) geometric morphisms to show that local homeomorphisms (in particular, product functors) preserve (CCD) objects, while preserving (CCD) objects implies openness.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1992

References

1. Carboni, Aurelio, Kelly, G. M. and Wood, R. J., A 2-categorical approach to change of base and geometric morphisms 1, Cahiers de topologie et géométrie différentielle catégoriques XXXII(1991), 4795.Google Scholar
2. Carboni, Aurelio and Street, Ross, Order ideals in categories, Pacific Journal of Mathematics (2) 124(1986), 275278.Google Scholar
3. Fawcett, Barry and Wood, R. J., Constructive complete distributivity 1, Math. Proc. Cam. Phil. Soc. 107(1990), 8189.Google Scholar
4. Joyal, André and Tierney, Myles, An Extension of the Galois Theory of Grothendieck, Memoirs of the American Mathematical Society 309, American Mathematical Society, 1984.Google Scholar
5. Mikkelsen, C. J., Lattice theoretic and logical aspects of elementary topoi, Publications Series 25, Aarhus Universitet, 1976.Google Scholar
6. Rosebrugh, Robert and Wood, R. J., Constructive complete distributive 2, Math. Proc. Camb. Phil. Soc. 110(1991), 245249.Google Scholar
7. Wood, R. J., Proarrows 1, Cahiers de topologie et géométrie différentielle catégoriques XXIII(1982), 279290.Google Scholar
8. Wood, R. J., Proarrows 2, Cahiers de topologie et géométrie différentielle catégoriques XXVI(1985), 135— 168.Google Scholar