Published online by Cambridge University Press: 20 November 2018
In this note we examine the question of the existence of a best possible N-net for a bounded set in a normed linear space. A sufficient condition for existence is given which leads to easy proofs of some of the standard results. The pertinent reference here is the paper by Garkavi [1].
Let E be a normed linear space and let M be a bounded set in E. Any system of N points in E will be called an N-net. For a given M and the net SN = {y1, y2,…, yN} define
and
Supported by National Research Council Grant A8755 and the Canadian Mathematical Congress Summer Research Institute.