Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T05:23:14.465Z Has data issue: false hasContentIssue false

Algebraic Elements and Sets of Uniqueness in the Group of Integers of a p-Series Field

Published online by Cambridge University Press:  20 November 2018

Bruce Aubertin*
Affiliation:
Department of Mathematics And Statistics, Massey University, Palmerston North, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be the group of integers of a p-series field. A class {E(θ)} of perfect null subsets of G is introduced and classified into M-sets and U-sets according to the arithmetical nature of the field element θ. This is analogous to the well-known classification, involving Pisot numbers, of certain Cantor sets on the circle.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1986

References

1. Bateman, P.T. and Duquette, A.L., The analogue of the Pisot-Vijayaraghavan numbers infields of formal power series, Illinois J. Math. 6 (1962), 594606.Google Scholar
2. Fine, N.J., On the Walsh functions, Trans. A.M.S. 65 (1949), 372414.Google Scholar
3. Grandet-Hugot, M, Une propriété des “nombres de Pisot” dans un corps de séries formelles, C.R. Acad. Sci. Paris Sér. A 265 (1967), 3941. errata, ibid., p. 551.Google Scholar
4. Grandet-Hugot, M, Éléments algébriques remarquables dans un corps de séries formelles, Acta Arith. 14 (1967/68), 177184.Google Scholar
5. Meyer, Y., Algebraic numbers and harmonic analysis, Amsterdam, North Holland, 1972.Google Scholar
6. Salem, R., Algebraic numbers and Fourier analysis, Heath, Boston, Mass., 1963.Google Scholar
7. Sneider, A., On uniqueness of expansions in Walsh functions, Mat. Sbornik N.S. 24 (1949), 379400.Google Scholar
8. Taibleson, M.H., Fourier analysis on local fields, Math. Notes Series, Princeton Univ. Press, Princeton N. J., 1975.Google Scholar
9. Wade, W.R., Sets of uniqueness for the group of integers of a p-series field, Can. J. Math. 31 (1979), 858866.Google Scholar
10. Wade, W.R., Recent developments in the theory of Walsh series, Internat. J. Math, and Math. Sci. 5(1982), 625673.Google Scholar
11. Yoneda, U.K., Perfect sets of uniqueness on the group 2ω , Can. J. Math. 34 (1982), 759764.Google Scholar
12. Zygmund, A, Trigonometric Series, 2nd ed., (2 vols.), Cambridge Univ. Press, New York, 1959.Google Scholar