Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T14:48:28.288Z Has data issue: false hasContentIssue false

Necessary and sufficient conditions on global solvability for the p-k-Hessian inequalities

Published online by Cambridge University Press:  17 January 2022

Jiguang Bao
Affiliation:
School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China e-mail: [email protected]
Qiaoli Feng*
Affiliation:
School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China e-mail: [email protected]

Abstract

In this paper, we discuss the solvability of the p-k-Hessian inequality $\sigma _{k}^{\frac 1k} ( \lambda ( D_{i} (|Du|^{p-2}$ $ D_{j}u ) ) ) \geq f(u)$ on the entire space $\mathbb {R}^{n}$ and provide a necessary and sufficient condition, which can be regarded as a generalized Keller–Osserman condition. Furthermore, we obtain the optimal regularity of solution.

Type
Article
Copyright
© Canadian Mathematical Society, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors are supported partially by the National Natural Science Foundation of China (11871102 and 11631002).

References

Bao, J., Ji, X., and Li, H., Existence and nonexistence theorem for entire subsolutions of $k$ -Yamabe type equations. J. Differential Equations 253(2012), no. 7, 21402160.CrossRefGoogle Scholar
Caffarelli, L., Crandall, M., Kocan, M., and Świech, A., On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 49(1996), no. 4, 365397.3.0.CO;2-A>CrossRefGoogle Scholar
Calderón, A.-P. and Zygmund, A., Local properties of solutions of elliptic partial differential equations. Studia Math. 20(1961), 171225.CrossRefGoogle Scholar
Filippucci, R., Pucci, P., and Rigoli, M., Nonlinear weighted p-Laplacian elliptic inequalities with gradient terms. Commun. Contemp. Math. 12(2010), no. 3, 501535.CrossRefGoogle Scholar
Francis, J. and Kenneth, S., Existence theorems for ordinary differential equations, New York University Press, New York, 1954x+154 pp.Google Scholar
Gilbarg, D. and Trudinger, N. S., Elliptic partial differential equations of second order. Second ed., Springer, Berlin, 1983, xiii+513 pp.Google Scholar
Haviland, E., A note on unrestricted solutions of the differential equation $\varDelta u=f(u)$ . J. Lond. Math. Soc. (2) 26(1951), 210214.CrossRefGoogle Scholar
Ji, X. and Bao, J., Necessary and sufficient conditions on solvability for Hessian inequalities. Proc. Amer. Math. Soc. 138(2010), no. 1, 175188.CrossRefGoogle Scholar
Jin, Q., Li, Y., and Xu, H., Nonexistence of positive solutions for some fully nonlinear elliptic equations. Methods Appl. Anal. 12(2005), 441450.CrossRefGoogle Scholar
Keller, J., On solutions of $\varDelta u=f(u)$ . Comm. Pure Appl. Math. 10(1957), 503510.CrossRefGoogle Scholar
Naito, Y. and Usami, H., Entire solutions of the inequality $\mathsf{{div}}\left(A\left(| Du|\right) Du\right)\ge f(u)$ . Math. Z. 225(1997), 167175.Google Scholar
Osserman, R., On the inequality $\varDelta u\ge f(u)$ . Pacific J. Math. 7(1957), 16411647.CrossRefGoogle Scholar
Philip, H., Ordinary differential equations. 2nd ed., Birkhäuser, Boston, MA, 1982.Google Scholar
Trudinger, N. S. and Wang, X., Hessian measures. II. Ann. of Math. (2) 150(1999), no. 2, 579604.CrossRefGoogle Scholar
Walter, W., Über ganze Lösungen der Differentialgleichung $\varDelta u=f(u)$ . Jahresber. Dtsch. Math.-Ver. 57(1955), 94102.Google Scholar
Wang, X., The k-Hessian equation . In: Geometric analysis and PDEs, Lecture Notes in Mathematics, 1977, Springer, Dordrecht, 2009, pp. 177252.CrossRefGoogle Scholar
Wittich, H., Ganze Lösungen der Differentialgleichung $\varDelta u={e}^u$ (German). Math. Z. 49(1944), 579582.CrossRefGoogle Scholar