Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T14:34:24.659Z Has data issue: false hasContentIssue false

Generalized torsion orders and Alexander polynomials

Published online by Cambridge University Press:  08 January 2025

Tetsuya Ito*
Affiliation:
Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan

Abstract

A nontrivial element of a group is a generalized torsion element if some products of its conjugates is the identity. The minimum number of such conjugates is called a generalized torsion order. We provide several restrictions for generalized torsion orders by using the Alexander polynomial.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author is partially supported by JSPS KAKENHI (Grant Nos. 19K03490, 21H04428, and 23K03110).

References

Apostol, T., Resultants of cyclotomic polynomials . Proc. Amer. Math. Soc. 24(1970), 457462.CrossRefGoogle Scholar
Bankwitz, C., Über die Torsionszahlen der alternierenden Knoten . Math. Ann. 103(1930), no. 1, 145161.CrossRefGoogle Scholar
Bavard, C., Longueur stable des commutateurs . Enseign. Math. (2) 37(1991), nos. 1–2, 109150.Google Scholar
Brunotte, H., A remark on roots of polynomials with positive coefficients . Manuscripta Math. 129(2009), no. 4, 523524.CrossRefGoogle Scholar
Burago, D., Ivanov, S., and Polterovich, L., Conjugation-invariant norms on groups of geometric origin. In: Groups of diffeomorphisms, Advanced Studies in Pure Mathematics, 52, Mathematical Society of Japan, Tokyo, 2008, pp. 221250.Google Scholar
Calegari, D., scl , Mem. Math. Soc. Japan 20(2009), xii+209 pp.Google Scholar
Calegari, D. and Zhuang, D., Stable W-length . In: Topology and geometry in dimension three, Contemporary Mathematics, 560, American Mathematical Society, Providence, RI, 2011, pp. 145169.CrossRefGoogle Scholar
Chiodo, M., On torsion in finitely presented groups . Groups Complex. Cryptol. 6(2014), no. 1, 18.CrossRefGoogle Scholar
Clay, A. and Rolfsen, D., Ordered groups and topology, Graduate Studies in Mathematics, 176, American Mathematical Society, Providence, RI, 2016.CrossRefGoogle Scholar
Dubickas, A., On roots of polynomials with positive coefficients . Manuscripta Math. 123(2007), no. 3, 353356.CrossRefGoogle Scholar
Goda, H. and Sakasai, T., Homology cylinders and sutured manifolds for homologically fibered knots . Tokyo J. Math. 36(2013), no.1, 85111.CrossRefGoogle Scholar
González-Acuña, F. and Short, H., Cyclic branched coverings of knots and homology spheres . Rev. Mat. Univ. Complut. Madrid 4(1991), no. 1, 97120.Google Scholar
Hillman, J., Algebraic invariants of links. Second ed. Series on Knots and Everything, 52, World Scientific Publishing, Hackensack, NJ, 2012.CrossRefGoogle Scholar
Himeno, K., Complicated generalized torsion elements in Seifert fibered spaces with boundary . J. Knot Theory Ramifications 32(2023), no. 12, Paper No. 2350080, 20 pp.CrossRefGoogle Scholar
Ito, T., Alexander polynomial obstruction of bi-orderability for rationally homologically fibered knot groups . New York J. Math. 23(2017), 497503.Google Scholar
Ito, T., Motegi, K., and Teragaito, M., Generalized torsion and decomposition of $3$ -manifolds . Proc. Amer. Math. Soc. 147(2019), 49995008.CrossRefGoogle Scholar
Ito, T., Motegi, K., and Teragaito, M., Generalized torsion and Dehn filling . Topology Appl. 301(2021), Paper No. 107515, 14 pp.CrossRefGoogle Scholar
Kawasaki, M., Kimura, M., Maruyama, S., Matsushita, T., and Mimura, M., Bavard’s duality theorem for mixed commutator length . Enseign. Math. 68(2022), nos. 3–4, 441481.CrossRefGoogle Scholar
Kawasaki, M., Kimura, M., Maruyama, S., Matsushita, T., and Mimura, M., Survey on invariant quasimorphisms and stable mixed commutator length . Topology Proc. 64(2024), 129174.Google Scholar
Menasco, W., Closed incompressible surfaces in alternating knot and link complements . Topology 23(1984), no. 1, 3744.CrossRefGoogle Scholar
Motegi, K. and Teragaito, M., Generalized torsion elements and bi-orderability of 3-manifold groups . Canad. Math. Bull. 60(2017), no. 4, 830844.CrossRefGoogle Scholar
Naylor, G. and Rolfsen, D., Generalized torsion in knot groups . Canad. Math. Bull. 59(2016), no. 1, 182189.CrossRefGoogle Scholar
Riley, R., Growth of order of homology of cyclic branched covers of knots . Bull. London Math. Soc. 22(1990), no. 3, 287297.CrossRefGoogle Scholar
Robinson, D., A course in the theory of groups. Second ed., Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1996, xviii+499 pp.CrossRefGoogle Scholar
Silver, D. and Williams, S., Torsion numbers of augmented groups with applications to knots and links . Enseign. Math. (2) 48(2002), nos. 3–4, 317343.Google Scholar
Weber, C., Sur une formule de R. H. Fox concernant l’homologie des revêtements cycliques . Enseign. Math. (2) 25(1979), nos. 3–4, 261272.Google Scholar