Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T15:30:48.670Z Has data issue: false hasContentIssue false

Commutativity via spectra of exponentials

Published online by Cambridge University Press:  02 November 2021

Rudi Brits
Affiliation:
Department of Mathematics and Applied Mathematics, University of Johannesburg, Johannesburg, South Africa e-mail: [email protected] [email protected]
Francois Schulz*
Affiliation:
Department of Mathematics and Applied Mathematics, University of Johannesburg, Johannesburg, South Africa e-mail: [email protected] [email protected]
Cheick Touré
Affiliation:
Department of Mathematics and Applied Mathematics, University of Johannesburg, Johannesburg, South Africa e-mail: [email protected] [email protected]
*

Abstract

Let A be a semisimple, unital, and complex Banach algebra. It is well known and easy to prove that A is commutative if and only $e^xe^y=e^{x+y}$ for all $x,y\in A$ . Elaborating on the spectral theory of commutativity developed by Aupetit, Zemánek, and Zemánek and Pták, we derive, in this paper, commutativity results via a spectral comparison of $e^xe^y$ and $e^{x+y}$ .

Type
Article
Copyright
© Canadian Mathematical Society, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aupetit, B., Caractérisation spectrale des algèbres de Banach commutatives. Pacific J. Math. 63(1976), 2335. http://doi.org/10.2140/pjm.1976.63.23 CrossRefGoogle Scholar
Aupetit, B., A primer on spectral theory . In: Universitext (1979), Springer-Verlag, Berlin, 1991. http://doi.org/10.1007/978-1-4612-3048-9 Google Scholar
Blackadar, B., Operator algebras: theory of ${C}^{\star }$ -algebras and von Neumann algebras. In: Encyclopaedia of Mathematical Sciences, Springer, Berlin, 2006. http://doi.org/10.1007/3-540-28517-2 Google Scholar
Brešar, M. and Šemrl, P., Derivations mapping into the socle. Math. Proc. Camb. Phil. Soc. 120(1996), 339346. http://doi.org/10.1017/s0305004100074892 CrossRefGoogle Scholar
Duncan, J. and Tullo, A., Finite dimensionality, nilpotents and quasinilpotents in Banach algebras. Proc. Edinburgh Math. Soc. 19(1974), no. 2, 4549. http://doi.org/10.1017/s0013091500015352 CrossRefGoogle Scholar
Fréchet, M., Les Solutions non commutables de L’équation matricielle ${e}^{x+y}={e}^x{e}^y$ . Rend. Circ. Math. Palermo 2(1952), 1127. http://doi.org/10.1007/bf02843715 CrossRefGoogle Scholar
Hirschfeld, R. and Johnson, B., Spectral characterization of finite dimensional algebras. Nedrl. Akad. Wet. Proc. Ser A 75(1972), 1923. http://doi.org/10.1016/1385-7258(72)90023-6 Google Scholar
Huff, C., On Pairs of matrices (of order two) $A,B$ satisfying the condition ${e}^{A+B}={e}^A{e}^B\ne {e}^B{e}^A$ . Rend. Circ. Math. Palermo 2(1953), 326330. http://doi.org/10.1007/bf02843709 CrossRefGoogle Scholar
Kakar, A., Non-commuting solutions of the matrix equation $\mathit{\exp}(X+Y)=\mathit{\exp}(X)\mathit{\exp}(Y)$ . Rend. Circ. Math. Palermo 2(1953), 331345. http://doi.org/10.1007/bf02843710 CrossRefGoogle Scholar
Morinaga, K. and Nôno, T., On the non-commutative solutions of the exponential equation ${e}^{x+y}={e}^x{e}^y$ . J. Sci. Hiroshima Univ. 17(1954), 345358. http://doi.org/10.32917/hmj/1557281146 Google Scholar
Morinaga, K. and Nôno, T., On the non-commutative solutions of the exponential equation ${e}^{x+y}={e}^x{e}^y$ II. J. Sci. Hiroshima Univ. 18(1954), 137178. http://doi.org/10.32917/hmj/1556935270 Google Scholar
Pták, V. and Zemánek, J., On uniform continuity of the spectral radius in Banach algebras. Manuscripta Math. 20(1977), no. 2, 177189. http://doi.org/10.1007/bf01170724 CrossRefGoogle Scholar
Rudin, W., Functional analysis . In: International series in pure and applied mathematics, McGraw-Hill, New York, 1991.Google Scholar
de Seguins Pazzis, C., On commuting matrices and exponentials. Proc. Amer. Math. Soc. 141(2013), no. 3, 763774. http://doi.org/10.1090/s0002-9939-2012-11396-6 CrossRefGoogle Scholar
Vesentini, E., On the subharmonicity of the spectral radius. Boll. Un. Mat. Ital. 4(1968), no. 1, 427429.Google Scholar
Zemánek, J., Spectral radius characterizations of commutativity in Banach algebras. Studia Math. 61(1977), no. 3, 257268. http://doi.org/10.4064/sm-61-3-257-268 CrossRefGoogle Scholar