Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T06:03:12.309Z Has data issue: false hasContentIssue false

Sleep, Subcortical Stimulation and Kindling in the Cat

Published online by Cambridge University Press:  18 September 2015

T. Tanaka*
Affiliation:
Centre National de la Recherche Scientifique, Gif-Sur-Yvette, France
H. Lange
Affiliation:
Centre National de la Recherche Scientifique, Gif-Sur-Yvette, France
R. Naquet*
Affiliation:
Centre National de la Recherche Scientifique, Gif-Sur-Yvette, France
*
Laboratoire de Physiologie Nerveuse, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France
Laboratoire de Physiologie Nerveuse, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A longitudinal study of the effects of sleep on amygdaloid kindling showed that kindling disrupted normal sleep patterns by reducing REM sleep and increasing awake time. Few interictal spike discharges were observed during the awake stage, while a marked increase in discharge was observed during the light and deep sleep stages. No discharges were observed during REM sleep. During the immediate post-stimulation period the nonstimulated amygdala showed a much higher rate of spike discharge. On the other hand, there was an increase in spike discharge in the stimulated amygdala during natural sleep without preceding amygdaloid stimulation. Amygdaloid stimulation at the generalized seizure threshold during each sleep stage resulted in a generalized convulsion.

The influence of subcortical electrical stimulation on kindled amygdaloid convulsions was investigated in a second experiment. Stimulation of the centre median and the caudate nucleus was without effect on kindled convulsions, while stimulation of the mesencephalic reticular formation at high frequency (300 Hz) reduced the latency of onset of kindled generalized convulsions. Stimulation of the nucleus ventralis lateralis of the thalamus at low frequency (10 Hz) prolonged the convulsion latency, and at high current levels blocked the induced convulsion. Stimulation in the central gray matter at low frequency (10 Hz) also blocked kindled amygdaloid convulsions.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1975

References

BIBLIOGRAPHY

Angeleri, F.Marchesi, G.F. and Quattrini, A. (1969). Effects of chronic thalamic lesions on the electrical activity of the neocortex and on sleep. Archives Italiennes de Biologie, 107, 633667.Google Scholar
Babb, T.L.Mitchell, A.G. JR. and Crandall, P.H. (1974). Fastigio-bulbar and dentatothalamic influences on hippocampal cobalt epilepsy in the cat. Elec-troencephalography and Clinicla Neurophysiology, 36, 141154.CrossRefGoogle Scholar
Balzamo, E.Bert, J.Menini, C. and Naquet, R. (1975). Excessive light sensitivity in Papio papio: its variation with age, sex and geographic origin. Epilepsia, 16, 269276.CrossRefGoogle ScholarPubMed
Batini, C.Criticos, A.Fressy, J. and Gastaut, H. (1962). A propos du sommeil nocturne chez des sujets presentant une épilepsie à expression EEG bisynchrone. Revue Neurologique, (Paris), 106, 221224.Google Scholar
Cooper, I.S. and Gilman, S. (1973). The effect of chronic cerebellar stimulation upon epilepsy in man. 98th Annual Meeting, American Neurological Association, July 1113, Montreal.Google Scholar
Dauth, G.Carr, D. and Gilman, S. (1974). Cerebellar cortical stimulation effect on EEG activity and seizure after discharge in anaesthetized cats. In: The Cerebellum. Epilepsy and Behavior. 229244, Plenum Press, New York.CrossRefGoogle Scholar
Delange, M.Gastan, P.Cadilhac, J. and Passouant, P. (1962). Etude du sommeil de nuit au cours d’épilepsies centrencéphaliques et temporales. Revue Neurologique, (Paris), 106, 106113.Google Scholar
Delorme, F.Vimont, P. and Jouvet, D. (1964). Etude statistique du cycle veille-sommeil chez le chat. Compte Rendus des Seances de la Societe de Biologie et de Ses Filiales, (Paris), 158, 21282130.Google Scholar
Dow, R.S.Fernandez-Guardiola, A. and Manni, E. (1962). The influence of the cerebellum in experimental epilepsy. Electroencephalography and clinical Neurophysiology, 14, 383398.CrossRefGoogle ScholarPubMed
Fischer-Williams, M.Poncet, M.Riche, D. and Naquet, R. (1968). Light induced epilepsy in the baboon, Papio papio: cortical and depth recordings. Electroencephalography and clinical Neurophysiology, 25, 557569.CrossRefGoogle ScholarPubMed
Gastaut, H.Batini, C.Fressy, J.Broughton, R.Tassinari, C.A. and Vittini, F. (1965). Etude électroencéphalographique des phénoménes épisodiques au cours du sommeil. In: Sommeil de nuit normal et pathologique. Masson, Paris, 239254.Google Scholar
Gibbs, E.L. and Gibbs, F.A. (1946). Diagnostic and localizing value of electroencephalographic studies in sleep. Research Publication of the Association for Research in Nervous and Mental Diseases, 26, 366376.Google Scholar
Goddard, G.V.McIntyre, D.C. and Leech, C.K. (1969). A permanent change in brain function resulting from daily electrical stimulation. Experimental Neurology, 25, 295330.CrossRefGoogle ScholarPubMed
Godin, Y.Heiner, L.Mark, J. and Mandel, P. (1969)Effect of Di-n-Propylacetate, and anticonvulsive compound, on GABA metabolism. Journal of Neurochemistry, 16, 869873.CrossRefGoogle ScholarPubMed
Iwata, M. and Snider, R.S. (1959). Cerebello-hippocampal influences on the electroencephalogram. Electroencephalography and clinical Neurophysiology, 11, 439446.CrossRefGoogle ScholarPubMed
Janz, D. (1962). The grand mal epilepsies and the sleeping-waking cycle. Epilepsia, (Amsterdam), 3, 69.CrossRefGoogle ScholarPubMed
Jasper, H.H. and Ajmone-Marsan, C. (1954). A stereotaxic atlas of the diencephalon of the cat. National Research Council of Canada, Ottawa.Google Scholar
Jouvet, M. (1965). Etude de la dualité des états de sommeil et des mécanismes de la phase paradoxale. In: M. Jouvet (Ed.), Aspects anatomofonctionnels de la physiologie du sommeil. Centre National de la Recherche Scientifique., (Paris), 397449.Google Scholar
Kikuchi, S. (1969). An electroencephalographic study of nocturnal sleep in temporal lobe epilepsy. Folia Psychiatrica et Neurologica Japonica, 23, 5981.Google ScholarPubMed
Killam, K.F.Killam, E.K. and Naquet, R. (1967). An animal model of light sensitive epilepsy. Electroencephalography and clinical Neurophysiology, 22, 497513.CrossRefGoogle ScholarPubMed
Lairy-Bounes, G.C.Parma, M. and Zanchetti, A. (1952). Modifications pendant la réaction d’arrêt de Berger de I’activite convulsive produite par l’application locale de strychnine sur le cortex cérébral du lapin. Electroencephalography and clinical Neurophysiology, 4, 495502.CrossRefGoogle Scholar
Lange, H.Tanaka, T. and Naquet, R., (submitted for publication). Temporospatial display of subcortical spike activity in kindling epilepsy.Google Scholar
Lanoir, J. (1972). Etude électrocorticographique de la veille et du sommeil chez le chat. These, Aix Marseille.Google Scholar
Mayanagi, Y. and Walker, A.E. (1974). Experimental temporal lobe epilepsy. Brain, 97, 423446.CrossRefGoogle ScholarPubMed
McIntyre, D. C. and Goddard, G.V. (1973). Transfer, interference and spontaneous recovery of convulsion kindled from the rat amygdala. Electroencephalography and clinical Neurophysiology, 35, 533543.CrossRefGoogle ScholarPubMed
Morrell, F. (1973). Goddard’s kindling phenomenon: a new model of the “mirror focus”. In: Sabelli, H.C. (Ed.), Chemical Modulation of Brain Function, Raven Press, New York, 207223.Google Scholar
Naquet, R. (1973). L’épilepsie photosensible du Papio papio. Un modèle de L’épilepsie photosensible de L’homme. Archives Italiennes de Biologie, 3, 516526.Google Scholar
Naquet, R. (1975). Genetic study of epilepsy: contributions of different models, especially the photosensitive Papio papio. In: Brazier, M.A. (Ed.), Growth and development of the brain, 219230. Raven Press, New York.Google Scholar
Naquet, R.Drossopoulo, G. and Salamon, G. (1956). Etude experimentale des effets de certains convulsivants: leurs relations avec I’excitabilité du système réticulaire, Revue Neurologique, 95, 484490.Google Scholar
Oliveras, J.L.Besson, J.M.Guilbaud, G. and Leibeskind, J.C. (1974). Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in the cat. Experimental Brain Research, 20, 3244.CrossRefGoogle ScholarPubMed
Passouant, P.Cadilhac, J. and Delange, M. (1965). Indications apportées par L’étude du sommeil de nuit sur la physiopathologie des épilepsies. International Journal of Neurology 5, 207216.Google Scholar
Purpura, D.P.Penry, J.K.Woodbury, D.M. and Walter, R. (Eds.) (1972). Experimental models of epilepsy, Raven Press.Google Scholar
Racine, R. (1972). Modification of seizure activity by electrical stimulation. I. Afterdischarge threshold. Electroencephalography and clinical Neurophysiology. 32, 269279.CrossRefGoogle Scholar
Snider, R.S. (1974). Cerebellar modifications of abnormal discharges in cerebral sensory and motor areas. In: The Cerebellum, Epilepsy and Behavior. Plenum Press, New York.CrossRefGoogle Scholar
Snider, R.S. and Niemer, W.T. (1961). A stereotaxic atlas of the cat brain. University of Chicago Press, Chicago, III.Google Scholar
Stermann, M.B.Knauss, T.Lehmann, D. and Clemente, C.D. (1965). Circadian sleep and waking patterns in the laboratory cat. Electroencephalography and clinical Neurophysiology, 19, 509517.CrossRefGoogle Scholar
Tanaka, A. (1972). Progressive changes of behavioral and electroencephalographic response to daily amygdaloid stimulation in rabbits. Fukuoka Acta Medica, 63, 152164.Google Scholar
Tanaka, T. and Lange, H. (1975). L’effet d’embrasement (kindling effect) par stimulation aymgdalienne chez le chat et le rat. Revue Electroencephalographie et Neurophysiologie. 5, 4144.CrossRefGoogle Scholar
Tanaka, T. and Naquet, R. (1975). Kindling effect and sleep organization in cats. Electroencephalography and clinical Neurophysiology, (in press).CrossRefGoogle Scholar
Testa, G. and Gloor, P. (1974). Generalized penicillin epilepsy in the cat: effect of midbrain cooling. Electroencephalography and clinical Neurophysiology, 36,517524.CrossRefGoogle ScholarPubMed
Wada, J.A. (1974). Progressive seizure recruitment in subhuman primates and effect of cerebellar stimulation upon developed vs. developing amygdaloid seizures. Commemorative Congress of the 10th Anniversary of the National Institute of Neurology, Mexico City, 38 Nov.Google Scholar
Wada, J.A. and Osawa, T. (1974). Recurrent spontaneous generalized convulsion state induced by daily amygdaloid stimulation in Senegalese baboon, Papio papio. Annual Meeting of American Electroencephalographic Society, July 25, Seattle.Google Scholar
Wada, J.A. and Sato, M. (1974). Generalized convulsive seizures induced by daily electrical stimulation of the amygdala in cats. Neurology, (Minneapolis), 24, (6), 565574.CrossRefGoogle ScholarPubMed