Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T22:11:36.315Z Has data issue: false hasContentIssue false

Primary Prevention and Delay of Onset of AD/Dementia

Published online by Cambridge University Press:  02 December 2014

Howard H. Feldman*
Affiliation:
The Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, B.C., Canada
Claudia Jacova
Affiliation:
The Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, B.C., Canada
*
Division of Neurology, UBC Hospital, S 192-2211 Wesbrook Mall, Vancouver, B.C., V6T 2B5, Canada.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Prevention in Alzheimer's disease and other dementias (AD/dementia) is defined on the basis of clinical states and their expressed symptoms. Primary prevention refers to delaying the development of the full-blown state of clinically expressed disease in normal individuals. Current primary prevention research is driven by evidence of AD/dementia protective factors that have emerged from epidemiological studies. The first randomized controlled trials (RCTs) of primary AD/dementia prevention have been designed to test the efficacy and safety of NSAIDs, hormonal therapy, antihypertensive drugs and antioxidants. The experience of these trials has indicated safety concerns as a key issue and highlighted significant design challenges in this type of research. These trials have required large sample sizes and unsustainable costs. There should be consideration given in future trials to enriching study samples with risk factors to increase progression rates to AD/dementia. Innovative strategies will also be needed to recruit and retain subjects given the long follow-up periods, modest perceived benefit and the potential for the risk-benefit ratio to change during the trial. It is foreseeable that regulatory authorities will be presented with primary prevention RCTs for approval and labelling, and that criteria to evaluate such evidence still need to be developed.

Résumé:

RÉSUMÉ:

La prévention de la maladie d'Alzheimer (MA) et des autres démences (MA/démence) se définit sur des bases cliniques et symptomatiques. En prévention primaire, on cherche à retarder l'apparition de la maladie avérée au point de vue clinique chez des individus normaux. Actuellement, la recherche en prévention primaire est basée sur des données provenant d'études épidémiologiques sur les facteurs de protection contre la MA/démence. Les premiers essais contrôlés randomisés (ECRs) en prévention primaire sur la MA/démence ont été conçus pour évaluer l'efficacité et la sécurité d'AINSs, de traitements hormonaux, d'antihypertenseurs et d'antioxydants. L'expérience acquise au cours de ces études a soulevé des questions importantes concernant la sécurité et a fait ressortir des défis importants quant au plan de ce type de recherche. Ces essais nécessitent de très grands échantillons et entraînent des coûts prohibitifs. À l'avenir, on devrait considérer enrichir les groupes en incluant des sujets ayant des facteurs de risque afin d'augmenter le taux de progression à la MA/démence. Des stratégies novatrices seront également nécessaires pour recruter et maintenir la participation des sujets aux études étant donné le suivi à long terme, les bénéfices perçus comme étant modestes et le taux de risques/bénéfices qui peut changer pendant l'étude. Il est à prévoir que des ECRs en prévention primaire seront présentés aux organismes de régulation pour approbation et étiquetage du conditionnement des médicaments et que des critères d'évaluation des données ainsi générées devront être développés.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2007

References

1. Canadian Study of Health and Aging Working Group. Canadian Study of Health and Aging: Study methods and prevalence of dementia. CMAJ. 1994; 150: 899913.Google Scholar
2. Ostbye, T, Crosse, E. Net economic costs of dementia in Canada. CMAJ. 1994; 151(10): 145764.Google Scholar
3. Sano, M. Noncholinergic treatment options for Alzheimer’s disease. J Clin Psychiatry. 2003; 64 Suppl 9: S238.Google Scholar
4. Petersen, RC. Aging, mild cognitive impairment, and Alzheimer’s disease. Neurol Clin. 2000; 18: 789806.CrossRefGoogle ScholarPubMed
5. Graham, JE, Rockwood, K, Beattie, BL, Eastwood, R, Gauthier, S, Tuokko, H, et al. Prevalence and severity of cognitive impairment with and without dementia in an elderly population. Lancet. 1997; 349: 17936.Google Scholar
6. Jack, CR, Petersen, RC, Xu, Y, O’Brien, PC, Smith, GE, Ivnik, RJ, et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology. 2000; 55: 4849.Google Scholar
7. Kaye, JA, Swihart, T, Howieson, D, Dame, A, Moore, MM, Karnos, T, et al. Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology. 1997; 48: 1297304.Google Scholar
8. De Santi, S, de Leon, MJ, Rusinek, H, Convit, A, Tarshish, CY, Roche, A, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging. 2001; 22: 52939.CrossRefGoogle ScholarPubMed
9. Drzezga, A, Lautenschlager, N, Siebner, H, Riemenschneider, M, Willoch, F, Minoshima, S, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003; 30: 110413.Google Scholar
10. Markesbery, WR. Neuropathological criteria for the diagnosis of Alzheimer’s disease. Neurobiol Aging. 1998; 18 (suppl 4): S139.CrossRefGoogle Scholar
11. Petersen, RC, Doody, R, Kurz, A, Mohs, RC, Morris, JC, Rabins, PV, et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001; 58(12): 198592.Google Scholar
12. Brookmeyer, R, Gray, S, Kawas, C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health. 1998; 88: 133742.CrossRefGoogle ScholarPubMed
13. Rockwood, K, Kirkland, S, Hogan, DB, MacKnight, C, Merry, H, Verreault, R, et al. Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol. 2002; 59(2): 2237.Google Scholar
14. Jick, H, Zornberg, GL, Jick, SS, Seshadri, S, Drachman, DA. Statins and the risk of dementia. Lancet. 2000; 356: 162731.CrossRefGoogle ScholarPubMed
15. Wolozin, B, Siegel, G. Decreased prevalence of Alzheimer disease associated with 3-Hydroxy-3-Methyglutaryl Coenzyme A reductase inhibitors. Arch Neurol. 2000; 57: 143943.Google Scholar
16. McGeer, PL, Schulzer, M, McGeer, EG. Arthritis and antiinflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology. 1996; 47: 42532.Google Scholar
17. in t’Veld, VB, Ruitenberg, A, Hofman, A, Launer, LJ, van Duijn, CM, Stijnen, T, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med. 2001; 345(21): 151521.Google Scholar
18. Zandi, PP, Anthony, JC, Khachaturian, AS, Stone, SV, Gustafson, D, Tschanz, JT, et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch Neurol. 2004; 61(1): 828.Google Scholar
19. Henderson, VW, Paganini-Hill, A, Emanuel, CK, Dunn, ME, Buckwalter, JG. Estrogen replacement therapy in older women. Arch Neurol. 1994; 51: 896900.Google Scholar
20. Kawas, C, Resnick, S, Morrison, A, Brookmeyer, R, Corrada, MZ, Bacal, C, et al. A prospective study of estrogen replacement therapy and the risk of developing Alzheimer’s disease: the Baltimore Longitudinal Study of Aging. Neurology. 1997; 48: 151721.Google Scholar
21. Bosma, H, van Boxtel, MP, Ponds, RW, Houx, PJ, Burdorf, A, Jolles, J. Mental work demands protect against cognitive impairment: MAAS prospective cohort study. Exp Aging Res. 2003; 29: 3345.Google Scholar
22. Verghese, J, Lipton, RB, Katz, MJ, Hall, CB, Derby, CA, Kuslansky, G, et al. Leisure activities and the risk of dementia in the elderly. N Engl J Med. 2003; 348(25): 250816.Google Scholar
23. Wilson, RS, Mendes De Leon, CF, Barnes, LL, Schneider, JA, Bienias, JL, Evans, DA, et al. Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA. 2002; 287: 7428.Google Scholar
24. Lindsay, J, Laurin, D, Verreault, R, Hebert, R, Helliwell, B, Hill, GB, et al. Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol. 2002; 156 (5): 44553.Google Scholar
25. Shumaker, SA, Legault, C, Thal, L, Wallace, RB, Ockene, JK, Hendrix, SL, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the women’s health initiative memory study: randomized controlled trial. JAMA. 2003; 289(20): 265162.Google Scholar
26. Shumaker, SA, Legault, C, Kuller, L, Rapp, SR, Thal, L, Lane, DS, et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA. 2004; 291(24): 294758.Google Scholar
27. Forette, F, Seux, ML, Staessen, JA, Thijs, L, Birkenhager, WH, Babarskiene, MR, et al. Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet. 1998; 352: 134751.Google Scholar
28. Lithell, H, Hansson, L, Skoog, I, Elmfeldt, D, Hofman, A, Olofsson, B, et al. The study on cognition and prognosis in the elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens. 2003; 21: 87586.Google Scholar
29. Boyles, S. Naproxen may increase risk of heart disease. 2005. Available from: http://www.medscape.com/viewarticle/496403Google Scholar
30. CHS Coordinating Center. Ginkgo Evaluation of Memory Study. 2003. Available from: http://www.nccam-ginkgo.orgGoogle Scholar
31. Vellas, B, Andrieu, S, Ousset, PJ, Ouzid, M, Mathiex-Fortunet, H. The GuidAge study: Methodological issues. A 5-year double-blind randomized trial of the efficacy of EGb 761(R) for prevention of Alzheimer disease in patients over 70 with a memory complaint. Neurology. 2006 Nov 14;67(9 Suppl 3):S611.CrossRefGoogle Scholar
32. Kryscio, RJ, Mendiondo, MS, Schmitt, FA, Markesbery, WR. Designing a large prevention trial: statistical issues. Stat Med. 2004; 23: 28596.CrossRefGoogle ScholarPubMed
33. Sjogren, M, Gustafsson, K, Syversen, S, Olsson, A, Edman, A, Davidsson, P, et al. Treatment with simvastatin in patients with Alzheimer’s disease lowers both alpha- and beta-cleaved amyloid precursor protein. Dement Geriatr Cogn Disord. 2003; 16: 2530.CrossRefGoogle ScholarPubMed
34. Fassbender, K, Simons, M, Bergmann, C, Stroick, M, Lutjohann, D, Keller, P, et al. Simvastatin strongly reduces levels of Alzheimer’s disease beta -amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci USA. 2001; 98: 585661.CrossRefGoogle ScholarPubMed
35. Mattson, MP, Haberman, F. Folate and homocysteine metabolism: therapeutic targets in cardiovascular and neurodegenerative disorders. Curr Med Chem. 2003; 10: 19239.CrossRefGoogle ScholarPubMed
36. Helliwell, B, Aylesworth, R, McDowell, I, Baumgarten, M, Sykes, E. Correlates of nonparticipation in the Canadian Study of Health and Aging. Int Psychogeriatr. 2001; 13 Supp 1: 4956.Google Scholar
37. Frank, RA, Galasko, D, Hampel, H, Hardy, J, de Leon, MJ, Mehta, PD, et al. Biological markers for therapeutic trials in Alzheimer’s disease. Proceedings of the biological markers working group; NIA initiative on neuroimaging in Alzheimer’s disease. Neurobiol Aging. 2003; 24: 52136.Google Scholar
38. Hampel, H, Mitchell, A, Blennow, K, Frank, RA, Brettschneider, S, Weller, L, et al. Core biological marker candidates of Alzheimer’s disease - perspectives for diagnosis, prediction of outcome and reflection of biological activity. J Neural Transm. 2004; 111: 24772.Google Scholar
39. Klunk, WE, Engler, H, Nordberg, A, Bacskai, BJ, Wang, Y, Price, JC, et al. Imaging the pathology of Alzheimer’s disease: amyloidimaging with positron emission tomography. Neuroimaging Clin N Am. 2003; 13: 7819, ix.Google Scholar
40. Resnick, SM, Henderson, VW. Hormone therapy and risk of Alzheimer disease: a critical time. JAMA. 2002; 288: 21702.Google Scholar
41. Fratiglioni, L, Paillard-Borg, S, Winblad, B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 2004; 3: 34353.Google Scholar
42. Sano, M. Current concepts in the prevention of Alzheimer’s disease. CNS Spectr. 2003; 8: 84653.Google Scholar
43. Black, SE, Patterson, C, Feightner, J. Preventing dementia. Can J Neurol Sci. 2001; 28 Suppl 1: S56-66.Google Scholar
44. Knopman, D. Pharmacotherapy for Alzheimer’s disease: 2002. Clin Neuropharmacol. 2003; 26: 93101.Google Scholar