Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T05:57:04.792Z Has data issue: false hasContentIssue false

Imaging Biomarkers and their Role in Dementia Clinical Trials

Published online by Cambridge University Press:  02 December 2014

Howard Chertkow*
Affiliation:
Canada
Sandra Black
Affiliation:
Canada
*
Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There are five potential major roles for neuroimaging with respect to dementia; 1) as a cognitive neuroscience research tool, 2) for prediction of which normal or slightly impaired individuals will develop dementia and over what time frame, 3) for early diagnosis of Alzheimer's disease (AD) in demented individuals, (sensitivity) and separation of AD from other forms of dementia (specificity), 4) for monitoring of disease progression, and 5) for monitoring response to therapies. Focusing on the last role, no single imaging approach is yet ideal, as all trade-off speed, cost, and accuracy. Functional imaging (SPECT and PET) is best suited to tracking symptomatic therapy response, and anatomic (MRI volumetric) imaging or amyloid PET are more suited to reflect dementia modulation studies. The potential for imaging with respect to pharmacological studies of dementia - to provide surrogate markers for drug studies, to improve diagnosis, to speed evaluation of outcomes, and to decrease sample sizes - is huge. At the present time, however, no single measure has sufficient proven reliability, replicability, or robustness, to replace clinical primary outcome measures.

Résumé:

RÉSUMÉ:

Il existe cinq rôles majeurs de la neuroimagerie dans l’évaluation de la démence : 1) comme outil de recherche en neuroscience cognitive; 2) pour prédire quels individus normaux ou présentant une légère atteinte cognitive développeront une démence et dans quel laps de temps; 3) pour poser un diagnostic précoce de maladie d’Alzheimer (MA) chez des individus déments (sensibilité) et pour distinguer la MA des autres démences (spécificité); 4) pour suivre la progression de la maladie et 5) pour évaluer la réponse au traitement. À ce propos, aucune approche d’imagerie ne s’est avérée idéale jusqu’à maintenant, parce que toutes font des compromis en ce qui concerne la rapidité, le coût et la précision. L’imagerie fonctionnelle (TEMP et TEP - SPECT and PET) est une meilleure approche pour suivre la réponse thérapeutique symptomatique et l’imagerie anatomique (IRM volumétrique) ou le TEP de la substance amyloïde conviennent mieux aux études de modulation de la démence. Le potentiel de l’imagerie dans les études pharmacologiques portant sur la démence est énorme : pour fournir des marqueurs de substitution pour l’étude de médicaments, pour améliorer le diagnostic, pour accélérer l’évaluation des résultats et pour diminuer la taille d’échantillon. Actuellement, aucune mesure ne s’est avérée suffisamment fiable, reproductible ou sûre pour remplacer les principales mesures d’impact clinique.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2007

References

1. Karbe, H, Wienhard, K, Hamacher, K, Huber, M, Herholz, K, Coenen, HH, et al. Positron emission tomography with (18F)methylspiperone demonstrates D2 dopamine receptor binding differences of clozapine and haloperidol. J Neural Transm Gen Sect. 1991;86(3): 16373.CrossRefGoogle ScholarPubMed
2. Thal, LJ, Kantarci, K, Reiman, EM, Klunk, WE, Weiner, MW, Zetterberg, H, et al. The role of biomarkers in clinical trials for Alzheimer disease. Alzheimer Dis Assoc Disord. 2006;20(1): 615.CrossRefGoogle ScholarPubMed
3. Cummings, JL. Clinical evaluation as a biomarker for Alzheimer’s disease. J Alzheimers Dis. 2005;8(4): 32737.CrossRefGoogle ScholarPubMed
4. Convit, A, Deleon, M, Tarshish, C, Desanti, S, Tsui, W, Rusinek, H, et al. Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease. Neurobiol Aging. 1997;18(2): 1318.CrossRefGoogle ScholarPubMed
5. Grundman, M, Sencakova, D, Jack, CR Jr., Petersen, RC, Kim, HT, Schultz, A, et al. Brain MRI hippocampal volume and prediction of clinical status in a mild cognitive impairment trial. J Mol Neurosci. 2002;19(1-2):237.CrossRefGoogle Scholar
6. Dickerson, BC, Goncharova, I, Sullivan, MP, Forchetti, C, Wilson, RS, Bennett, DA, et al. MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiol Aging. 2001;22(5): 74754.CrossRefGoogle ScholarPubMed
7. Gron, G, Bittner, D, Schmitz, B, Wunderlich, AP, Riepe, MW. Subjective memory complaints: objective neural markers in patients with Alzheimer’s disease and major depressive disorder. Ann Neurol. 2002;51(4): 4918.CrossRefGoogle ScholarPubMed
8. Mori, E, Lee, K, Yasuda, M, Hashimoto, M, Kazui, H, Hirono, N, et al. Accelerated hippocampal atrophy in Alzheimer’s disease with apolipoprotein E epsilon4 allele . Ann Neurol. 2002;51(2): 20914.CrossRefGoogle ScholarPubMed
9. Visser, PJ, Scheltens, P, Verhey, FR, Schmand, B, Launer, LJ, Jolles, J, et al. Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. J Neurol. 1999;246(6): 47785.CrossRefGoogle ScholarPubMed
10. Jack, CR Jr., Petersen, RC, Xu, Y, O’Brien, PC, Smith, GE, Ivnik, RJ, et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology. 2000;55(4): 4849.CrossRefGoogle ScholarPubMed
11. Killiany, RJ, Moss, MB, Albert, MS, Sandor, T, Tieman, J, Jolesz, F. Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer’s disease. Arch Neurol. 1993;50(9): 94954.CrossRefGoogle ScholarPubMed
12. Juottonen, K, Laasko, MP, Insausti, R, Lehtovirta, M, Pitkanen, A, Partanen, K, et al. Volumes of the entorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiol Aging. 1997;19(1): 1522.CrossRefGoogle Scholar
13. Chetelat, G, Baron, JC. Early diagnosis of Alzheimer’s Disease: contribution of structural neuroimaging. NeuroImage. 2003;18(2): 52541.CrossRefGoogle ScholarPubMed
14. Lehericy, S, Baulac, M, Chiras, , et al. Amygdalohippocampal MR volume measurements in the early stages of Alzheimer’s disease. Am J Neuroradiology. 1994;15:92737.Google Scholar
15. Erkinjuntti, T, Lee, DH, Gao, F, Steenhuis, R, Eliasziw, M, Fry, R, et al. Temporal lobe atrophy on magnetic resonance imaging in the diagnosis of early Alzheimer’s disease. Arch Neurol. 1993;50(3): 30510.CrossRefGoogle ScholarPubMed
16. Jack, CR Jr., Petersen, RC, Xu, YC, Waring, SC, O’Brien, PC, Tangalos, EC, et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology. 1997;49(3): 78694.CrossRefGoogle ScholarPubMed
17. Bobinski, M, deLeon, M, Convit, A, de Santi, S, Wegiel, J, Tarshish, CY, et al. MRI of entorhinal cortex in mild Alzheimer’s disease. Lancet. 1999;353:3840.CrossRefGoogle ScholarPubMed
18. Rossor, MN, Freeborougth, P, Roques, P. Slowing the progression of Alzheimer’s Disease: monitoring progression. Alzheimer Dis Assoc Disord. 1997;11 Suppl 5:S69.Google ScholarPubMed
19. DeCarli, C, Haxby, JV, Gillette, JA, Teichberg, D, Rapoport, SI, Schapiro, MB. Longitudinal changes in lateral ventricular volume in patients with dementia of the Alzheimer type. Neurology. 1992;42(10): 202936.Google ScholarPubMed
20. Jack, CR Jr., Shiung, MM, Gunter, JL, O’Brien, PC, Weigand, SD, Knopman, DS, et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology. 2004;62(4): 591600.CrossRefGoogle ScholarPubMed
21. Wahlund, LO BF, Fazekas, F, Bronge, L, Augustin, M, Sjögren, M, et al. on behalf of the European Task Force on Age-Related White Matter Changes. A New Rating Scale for Age-Related White Matter Changes Applicable to MRI and CT. Stroke. 2001;32:1318.CrossRefGoogle ScholarPubMed
22. Fein, G, Di Sclafani, V, Tanabe, J, Cardenas, V, Weiner, MW, Jagust, WJ, et al. Hippocampal and cortical atrophy predict dementia in subcortical ischemic vascular disease. Neurology. 2000;55(11): 162635.CrossRefGoogle ScholarPubMed
23. Mungas, D, Jagust, WJ, Reed, BR, Kramer, JH, Weiner, MW, Schuff, N, et al. MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer’s disease. Neurology. 2001;57(12): 222935.CrossRefGoogle ScholarPubMed
24. Swartz, RH, Black, SE, Feinstein, A, Rockel, C, Sela, G, Gao, FQ, et al. Utility of simultaneous brain, CSF and hyperintensity quantification in dementia. Psychiatry Res Neuroimag. 2002;116:8393.CrossRefGoogle ScholarPubMed
25. Jones, DK LD, Horsfield, MA, Simmons, A, Williams, SCR, Markus, HS. Characterization of White Matter Damage in Ischemic Leukoaraiosis with Diffusion Tensor MRI. Stroke. 1999;30: 3937.CrossRefGoogle ScholarPubMed
26. Kabani, NJ, Sled, JG, Chertkow, H. Magnetization transfer ratio in mild cognitive impairment and dementia of Alzheimer’s type. Neuroimage. 2002;15(3): 60410.CrossRefGoogle ScholarPubMed
27. Stebbins, GT, Fleischman, DA, Bangen, KA, Turner, DA, Bennett, DA, Gabrieli, JD. Voxel-based morphometry contributions to the diagnosis of mild cognitive impairment. In: Weiner, MW, editor. Alzheimer’s Imaging Consortium. An official satellite of the 9th International Conference on Alzheimer’s Disease and Related Disorders; 2004 July 17; Philadelphia, Pennsylvania, USA: 2004: p. 89.Google Scholar
28. Johnson, NA, Jahng, GH, Weiner, MW, Chui, HC, Miller, B, Jagust, WJ, et al. Patterns of cerebral hypoperfusion in Alzheimer’s disease and mild cognitive impairment measured with arterial spin labeled MRI. In: Weiner, MW, editor. Alzheimer’s Imaging Consortium. An official satellite of the 9th International Conference on Alzheimer’s Disease and Related Disorders; 2004 July 17; Philadelphia, Pennsylvania, USA: 2004: p. 10.Google Scholar
29. Lerch, J, Pruessner, J, Zijdenbos, A, Collins, DL, Teipel, S, Hampel, H, et al. Using cortical thickness to predict Alzheimer’s disease. In: Weiner, MW, editor. Alzheimer’s Imaging Consortium. An official satellite of the 9th International Conference on Alzheimer’s Disease and Related Disorders; 2004 July 17; Philadelphia, Pennsylvania, USA: 2004: p. 11.Google Scholar
30. Fox, N, Schott, J, Barnes, J, Price, S, Anderson, V, Whitwell, J, et al. MRI to measure progression to AD and in AD (Neurobiology of Aging). In: Coleman, PD, editor. 8th International Montreal/Springfield Symposium on Advances in Alzheimer Therapy; 2004 April 14-17; Montreal, Canada. Elsevier, 2004: p. S10.Google Scholar
31. Schnack, HG NEea. Reliability of brain volumes from muiticentre MRI acquisition: a calibration study. Human Brain Mapping: 2002;22:31220.CrossRefGoogle Scholar
32. Visser, PJ, Scheltens, P, Pelgrim-Korf, E, Verhey, F. Medial Temporal Lobe Atrophy as Predictor of Cognitive Improvement Upon Treatment with Rivastigmine in Alzheimer’s Disease Patients. In: Weiner, MW, editor. Alzheimer’s Imaging Consortium. An official satellite of The 9th International Conference on Alzheimer’s Disease and Related Disorders; 2004 July 17; Philadelphia, Pennsylvania, USA: 2004: p. 478.Google Scholar
33. Petersen, RC, Thomas, RG, Grundman, M, Bennett, D, Doody, R, Ferris, S, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005;352(23): 237988.CrossRefGoogle ScholarPubMed
34. Krishnan, KR, Charles, HC, Doraiswamy, PM, Mintzer, J, Weisler, R, Yu, X, et al. Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer’s disease. Am J Psychiatry. 2003;160(11): 200311.CrossRefGoogle ScholarPubMed
35. Hashimoto, M, Kazui, H, Matsumoto, K, Nakano, Y, Yasuda, M, Mori, E. Does donepezil treatment slow the progression of hippocampal atrophy in patients with Alzheimer’s disease? Am J Psychiatry. 2005;162(4): 67682.CrossRefGoogle ScholarPubMed
36. Fox, NC, Black, RS, Gilman, S, Rossor, MN, Griffith, SG, Jenkins, L, et al. Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology. 2005;64(9): 156372.CrossRefGoogle ScholarPubMed
37. Catani, M, Cherubini, A, Howard, R, Tarducci, R, Pelliccioli, GP, Piccirilli, M, et al. (1)H-MR spectroscopy differentiates mild cognitive impairment from normal brain aging. Neuroreport. 2001;12(11): 231517.CrossRefGoogle ScholarPubMed
38. Kantarci, K, Jack, CR Jr., Xu, YC, Campeau, NG, O’Brien, PC, Smith, GE, et al. Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: A 1H MRS study. Neurology. 2000;55(2): 21017.CrossRefGoogle ScholarPubMed
39. Kantarci, K, Jack, CR Jr., Xu, YC, Campeau, NG, O’Brien, PC, Smith, GE, et al. Mild cognitive impairment and Alzheimer disease: regional diffusivity of water. Radiology. 2001;219(1): 1017.CrossRefGoogle ScholarPubMed
40. Rose, SE, de Zubicaray, GI, Wang, D, Galloway, GJ, Chalk, JB, Eagle, SC, et al. A 1H MRS study of probable Alzheimer’s disease and normal aging: implications for longitudinal monitoring of dementia progression. Mag Reson Imaging. 1999; 17(2):2919.CrossRefGoogle ScholarPubMed
41. Valenzuela, MJ, Sachdev, P. Magnetic resonance spectroscopy in AD. Neurology. 2001;56(5): 5928.CrossRefGoogle ScholarPubMed
42. Bookheimer, SY, Strojwas, M, Cohen, MS, Saunders, AM, Pericak-Vance, MA, Mazziotta, JC, et al. Patterns of brain activation in people at risk for Alzheimer’s Disease. N Engl J Med. 2000; 343:450-6.Google Scholar
43. Burggren, AC, Small, GW, Sabb, FW, Bookheimer, SY. Specificity of brain activation patterns in people at genetic risk for Alzheimer disease. Am J Geriatr Psychiatry. 2002;10(1): 4451.CrossRefGoogle ScholarPubMed
44. Chertkow, H, Murtha, S. PET activation and language. Clin Neurosci. 1997;4(2): 7886.Google ScholarPubMed
45. Friedland, RP, Budinger, TF, Ganz, E, Yano, Y, Mathis, CA, Koss, B, et al. Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with [18F]fluorodeoxyglucose. J Comput Assist Tomogr. 1983;7(4): 5908.CrossRefGoogle Scholar
46. Cutler, N, Haxby, J, Duara, R, Grady, C, Kay, A, Kessler, R, et al. Clinical history, brain metabolism, and neuropsychological function in Alzheimer’s disease. Ann Neurol. 1985; 18(3): 298309.CrossRefGoogle ScholarPubMed
47. McGeer, EG, Peppard, RP, McGeer, PL, Tuokko, H, Crockett, D, Parks, R, et al. [18]-Fluorodeoxyglucose positron emission tomography studies in presumed Alzheimer cases, including 13 serial scans. Can J Neurol Sci. 1990;17(1): 111.CrossRefGoogle Scholar
48. Foster, NL, Chase, TN, Fedio, P, Patronas, NJ, Brooks, RA, Dichiro, G. Alzheimer’s disease: focal cortical changes shown by positron emission tomography. Neurology. 1983;33(8): 9615.CrossRefGoogle ScholarPubMed
49. Heiss, WD, Szelies, B, Kessler, J, Herholz, K. Abnormalities of energy metabolism in Alzheimer’s disease studied with PET. Ann NY Acad Sci. 1991;640:6571.CrossRefGoogle ScholarPubMed
50. Frackowiak, R, Pozzilli, C, Legg, NJ, DuBouley, GH, Marshall, J, Lenzi, GL, et al. Regional cerebral oxygen supply and utilization in dementia. Brain. 1981;104:75378.CrossRefGoogle ScholarPubMed
51. Brun, A, Englund, E. Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology. 1981;1981:549564.CrossRefGoogle Scholar
52. Friedland, RP, Brun, A, Budinger, TM. Pathological and positron emission tomographic correlation in Alzheimer’s disease. Lancet. 1985;i:228.CrossRefGoogle Scholar
53. Mann, UM, Mohr, E, Gearing, M, Chase, TN. Heterogeneity in Alzheimer’s disease: progression rate segregated by distinct neuropsychological and cerebral metabolic profiles. Journal of Neurology, Neurosurgery & Psychiatry. 1992;55(10): 9569.CrossRefGoogle ScholarPubMed
54. Goto, I, Taniwaki, T, Hosokawa, S, Otsuka, M, Ichiya, Y, Ichimiya, A. Positron emission tomographic (PET) studies in dementia. J Neurol Sci. 1993;114(1): 16.CrossRefGoogle ScholarPubMed
55. Haxby, JV, Duara, R, Grady, CL, Cutler, NR, Rapoport, SI. Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease. J Cereb Blood Flow Metab. 1985;5:193200.CrossRefGoogle ScholarPubMed
56. Nordberg, A. Application of PET in dementia disorders. Acta Neurol Scand. Supplementum 1996;168:716.CrossRefGoogle ScholarPubMed
57. Chetelat, G, Desgranges, B, de la Sayette, V, Viader, F, Eustache, F, Baron, JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 2003;60(8): 13747.CrossRefGoogle ScholarPubMed
58. Arnaiz, E, Jelic, V, Almkvist, O, Wahlund, LO, Winblad, B, Valind, S, et al. Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment. Neuroreport. 2001;12(4): 8515.CrossRefGoogle ScholarPubMed
59. Silverman, DH, Small, GW, Chang, CY, Lu, CS, Kung De Aburto, MA, Chen, W, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286(17): 21207.CrossRefGoogle ScholarPubMed
60. Jagust, WJ, Eberling, JL, Richardson, BC, Reed, BR, Baker, MG, Nordahl, TE, et al. The cortical topography of temporal lobe hypometabolism in early Alzheimer’s disease. Brain Res. 1993;629(2): 18998.CrossRefGoogle ScholarPubMed
61. Drzezga, A, Lautenschlager, N, Siebner, H, Riemenschneider, M, Willoch, F, Minoshima, S, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30(8): 110413.Google ScholarPubMed
62. Ishii, K, Kono, AK, Sasaki, H, Miyamoto, N, Fukuda, T, Sakamoto, S, et al. Fully automatic diagnostic system for early- and late-onset mild Alzheimer’s disease using FDG PET and 3D-SSP. Eur J Nucl Med Mol Imaging. 2006;33(5): 57583.CrossRefGoogle ScholarPubMed
63. Reiman, EM, Caselli, RJ, Yun, LS, Chen, K, Bandy, D, Minoshima, S, et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E . N Engl J Med. 1996;334(12): 7528.CrossRefGoogle ScholarPubMed
64. Kaasinen, V, Nagren, K, Jarvenpaa, T, Roivainen, A, Yu, M, Oikonen, V, et al. Regional effects of donepezil and rivastigmine on cortical acetylcholinesterase activity in Alzheimer’s disease. J Clin Psychopharmacol. 2002;22(6): 61520.CrossRefGoogle ScholarPubMed
65. Nordberg, A. PET studies and cholinergic therapy in Alzheimer’s disease. Rev Neurol (Paris). 1999;155 Suppl 4:S5363.Google ScholarPubMed
66. Nordberg, A. Functional studies of new drugs for the treatment of Alzheimer’s disease. Acta Neurol Scand. Supplementum 1996;165:13744.CrossRefGoogle ScholarPubMed
67. Tune, Lea. Donepezil HCl maintains functional brain activity in patients with Alzheimer Disease: results of a 24-week, doubleblind, placebo-controlled study. Am J Geriatr Psychiatry. 2003;11:16977.CrossRefGoogle ScholarPubMed
68. Ohyama, M, Senda, M, Kitamura, S, Terashi, A. [Changes in regional cerebral blood flow during auditory cognitive tasks—a PET activation study with odd-ball paradigm]. Rinsho Shinkeigaku. 1993;33(2): 13440.Google ScholarPubMed
69. Grady, CL, Haxby, JV, Horwitz, B, Gillette, J, Salerno, JA, Gonzalez-Aviles, A, et al. Activation of cerebral blood flow during a visuoperceptual task in patients with Alzheimer-type dementia. Neurobiol Aging. 1993;14(1): 3544.CrossRefGoogle ScholarPubMed
70. Heiss, WD, Pawlik, G, Holthoff, V, Kessler, J, Szelies, B. PET correlates of normal and impaired memory functions. Cerebrovasc Brain Metab Rev. 1992;4(1): 127.Google ScholarPubMed
71. Friston, KJ, Grasby, PM, Bench, CJ, Frith, CD, Cowen, PJ, Liddle, PF, et al. Measuring the neuromodulatory effects of drugs in man with positron emission tomography. Neurosci Lett. 1992; 14(1):10610.CrossRefGoogle Scholar
72. Friston, KJ, Grasby, PM, Frith, CD, Bench, CJ, Dolan, RJ, Cowen, PJ, et al. The neurotransmitter basis of cognition: psychopharmacological activation studies using positron emission tomography. Ciba Found Symp. 1991;163:7687; discussion 87-92.Google ScholarPubMed
73. Heiss, WD, Kessler, J, Slansky, I, Mielke, R, Szelies, B, Herholz, K. Activation PET as an instrument to determine therapeutic efficacy in Alzheimer’s disease. Ann N Y Acad Sci. 1993;695:32731.CrossRefGoogle ScholarPubMed
74. Sihver, W, Langstrom, B, Nordberg, A. Ligands for in vivo imaging of nicotinic receptor subtypes in Alzheimer brain. Acta Neurol Scand. Suppl 2000;176:2733.CrossRefGoogle ScholarPubMed
75. Klunk, WE, Wang, Y, Huang, GF, Debnath, ML, Holt, DP, Shao, L, et al. The binding of 2-(4’-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci. 2003;23(6): 208692.CrossRefGoogle ScholarPubMed
76. Klunk, WE, Engler, H, Nordberg, A, Wang, Y, Blomqvist, G, Holt, DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3): 30619.CrossRefGoogle ScholarPubMed
77. Shoghi-Jadid, K, Small, GW, Agdeppa, ED, Kepe, V, Ercoli, LM, Siddarth, P, et al. Localization of neurofibrillary tangles and betaamyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry. 2002;10(1): 2435.CrossRefGoogle ScholarPubMed
78. Rowe, CC, Ng, S, Gong, GLSJ, Ackermann, U, Pike, K, Savage, G, et al. C-11 PIB PET amyloid imaging in aging and dementia (O3-06-07). In: ICAD-Alzheimer’s Association 10th International Conference on Alzheimer’s Disease and Related Disorders; 2006; Madrid, Spain: Alzheimer’s and Dementia (the journal of the Alzheimer’s association), 2006: S6667.Google Scholar
79. Jagust, WJ, Budinger, TF, Reed, BR. The diagnosis of dementia with single photon emission computed tomography. Arch Neurol. 1987;44(3): 25862.CrossRefGoogle ScholarPubMed
80. Huang, C, Wahlund, LO, Svensson, L, Winblad, B, Julin, P. Cingulate cortex hypoperfusion predicts Alzheimer’s disease in mild cognitive impairment. BMC Neurol. 2002;2(1):9.CrossRefGoogle ScholarPubMed
81. McKelvey, R, Bergman, H, Stern, J, Rush, C, Zahirney, G, Chertkow, H. Lack of prognostic significance of SPECT abnormalities in non-demented elderly subjects with memory loss. Can J Neurosci. 1999;26:238.Google ScholarPubMed
82. Johnson, KA, Jones, K, Holman, BL, Becker, JA, Spiers, PA, Satlin, A, et al. Preclinical prediction of Alzheimer’s disease using SPECT. Neurology. 1998;50:156371.CrossRefGoogle ScholarPubMed
83. Nestor, PJ, Fryer, TD, Ikeda, M, Hodges, JR. Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer’s disease). Eur J Neurosci. 2003;18(9): 26637.CrossRefGoogle ScholarPubMed
84. Waldemar, G. Functional brain imaging with SPECT in normal aging and dementia. Methodological, pathophysiological, and diagnostic aspects. Cerebrovasc Brain Metab Rev. 1995;7(2): 89130.Google ScholarPubMed
85. Holman, BL, Johnson, KA, Gerada, B. The scintigraphic appearance of Alzheimer’s disease: a prospective study using Technetium-99m-HMPAO SPECT. J Nucl Med. 1992;33:1815.Google ScholarPubMed
86. Steinling, M, Defebvre, L, Duhamel, A, Lecouffe, P, Lavenu, I, Pasquier, F, et al. Is there a typical pattern of brain SPECT imaging in Alzheimer’s disease? Dement Geriatr Cogn Disord. 2001;12(6): 3718.CrossRefGoogle Scholar
87. Neary, D, Snowden, JS, Shields, RA, Burjan, AW, Northen, B, MacDermott, N, et al. Single photon emission tomography using 99mTc-HM-PAO in the investigation of dementia. J Neurol Neurosurg Psychiatry. 1987;50(9): 11019.CrossRefGoogle ScholarPubMed
88. Kogure, D, Matsuda, H, Ohnishi, T, Asada, T, Uno, M, Kunihiro, T, et al. Longitudinal evaluation of early Alzheimer’s disease using brain perfusion SPECT. J Nucl Med. 2000; 41(7):115562.Google ScholarPubMed
89. Venneri, A, Shanks, MF, Staff, RT, Pestell, SJ, Forbes, KE, Gemmell, HG, et al. Cerebral blood flow and cognitive responses to rivastigmine treatment in Alzheimer’s disease. Neuroreport. 2002;13(1): 837.CrossRefGoogle ScholarPubMed
90. Lojkowska, W, Ryglewicz, D, Jedrzejczak, T, Minc, S, Jakubowska, T, Jarosz, H, et al. The effect of cholinesterase inhibitors on the regional blood flow in patients with Alzheimer’s disease and vascular dementia. J Neurol Sci. 2003;216(1): 11926.CrossRefGoogle ScholarPubMed
91. Nakano, S, Asada, T, Matsuda, H, Uno, M, Takasaki, M. Donepezil hydrochloride preserves regional cerebral blood flow in patients with Alzheimer’s disease. J Nucl Med. 2001;42(10): 14415.Google ScholarPubMed
92. Nobili, F, Vitali, P, Canfora, M, Girtler, N, De Leo, C, Mariani, G, et al. Effects of long-term Donepezil therapy on rCBF of Alzheimer’s patients. Clin Neurophysiol. 2002;113(8): 12418.CrossRefGoogle Scholar
93. Nobili, F, Koulibaly, M, Vitali, P, Migneco, O, Mariani, G, Ebmeier, K, et al. Brain perfusion follow-up in Alzheimer’s patients during treatment with acetylcholinesterase inhibitors. J Nucl Med. 2002;43(8): 98390.Google ScholarPubMed
94. Minoshima, S, Giordani, B, Berent, S, Frey, KA, Foster, NL, Kuhl, DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol. 1997;42(1): 8594.CrossRefGoogle ScholarPubMed
95. De Santi, S, de Leon, MJ, Rusinek, H, Convit, A, Tarshish, CY, Roche, A, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging. 2001;22(4): 52939.CrossRefGoogle ScholarPubMed