Hostname: page-component-6bf8c574d5-rwnhh Total loading time: 0 Render date: 2025-02-25T22:22:51.864Z Has data issue: false hasContentIssue false

Clinical Neuropathology Conference: “Liquid Assets”

Published online by Cambridge University Press:  10 January 2025

Amirti Vivekanandan
Affiliation:
Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
Shervin Pejhan
Affiliation:
Department of Pathology and Laboratory Medicine, London Health Sciences Centre, Western University, London, ON, Canada
Michael Strong
Affiliation:
Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
Joseph Megyesi
Affiliation:
Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
Andrew Leung
Affiliation:
Department of Diagnostic Imaging, London Health Sciences Centre, Western University, London, ON, Canada
Maria MacDonald
Affiliation:
Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
Cynthia Hawkins
Affiliation:
Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
Robert Hammond*
Affiliation:
Department of Pathology and Laboratory Medicine, London Health Sciences Centre, Western University, London, ON, Canada
*
Corresponding author: Robert Hammond; Email: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Clinical Neuropathological Conference
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contributed equally to this work.

References

Wang, Q, Wen, Z, Cao, Q. Risk of tuberculosis during infliximab therapy for inflammatory bowel disease, rheumatoid arthritis, and spondyloarthropathy: a meta-analysis. Exp Ther Med. 2016;12:16931704.CrossRefGoogle ScholarPubMed
Dahmus, J, Rosario, M, Clarke, K. Risk of lymphoma associated with anti-TNF therapy in patients with inflammatory bowel disease: implications for therapy. Clin Exp Gastroenterol. 2020;13:339350.CrossRefGoogle ScholarPubMed
Stamatiades, GA, Ioannou, P, Petrikkos, G, Tsioutis, C. Fungal infections in patients with inflammatory bowel disease: a systematic review. Mycoses. 2018;61:366376.CrossRefGoogle ScholarPubMed
Morís, G. Inflammatory bowel disease: an increased risk factor for neurologic complications. World J Gastroenterol. 2014;20:1228.CrossRefGoogle ScholarPubMed
Hu, J, Western, S, Kesari, S. Brainstem glioma in adults. Front Oncol. 2016;6:180.CrossRefGoogle ScholarPubMed
Yu, D, Han, G, Liu, H, Gao, L, Verma, V. Treatment of adult brainstem glioma with combined antiangiogenic therapy: a case report and literature review. Onco Targets Ther. 2019;12:13331339.CrossRefGoogle ScholarPubMed
Guzmán-De-Villoria, JA, Fernández-García, P, Ferreiro-Argüelles, C. Differential Diagnosis of T2 Hyperintense Brainstem Lesions: Part 1. Focal Lesions. Semin Ultrasound CT MR. 2010;31:246259.CrossRefGoogle ScholarPubMed
WHO Classification of Tumours Editorial Board. World Health Organization classification of tumours of the central nervous system. 5th edn. Lyon: International Agency for Research on Cancer; 2021.Google Scholar
Dono, A, Takayasu, T, Ballester, LY, Esquenazi, Y. Adult diffuse midline gliomas: clinical, radiological, and genetic characteristics. J Clin Neurosci. 2020;82:18.CrossRefGoogle ScholarPubMed
Hoffman, LM, Veldhuijzen van Zanten, SE, Colditz, N, et al. Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the international and european society for pediatric oncology DIPG registries. J Clin Oncol. 2018;36:1963–72.CrossRefGoogle ScholarPubMed
Buczkowicz, P, Bartels, U, Bouffet, E, Becher, O, Hawkins, C. Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathol. 2014;128:573581.CrossRefGoogle ScholarPubMed
Mattox, AK, Yan, H, Bettegowda, C. The potential of cerebrospinal fluid-based liquid biopsy approaches in CNS tumors. Neuro Oncol. 2019;21:15091518.CrossRefGoogle ScholarPubMed
Miller, AM, Shah, RH, Pentsova, EI, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019;565:654658.CrossRefGoogle ScholarPubMed
Iser, F, Hinz, F, Hoffmann, DC, et al. Cerebrospinal fluid cfDNA sequencing for classification of central nervous system glioma. Clin Cancer Res. 2024;30:2974–85.Google ScholarPubMed
Friedman, JS, Hertz, CAJ, Karajannis, MA, Miller, AM. Tapping into the genome: the role of CSF ctDNA liquid biopsy in glioma. Neuro-Oncology Advances. 2022;4:ii33–ii40.CrossRefGoogle ScholarPubMed
Chai, R, An, S, Lin, H, et al. Sequencing of cerebrospinal fluid cell-free DNA facilitated early differential diagnosis of intramedullary spinal cord tumors. NPJ Precision Oncology. 2024;8:43.CrossRefGoogle ScholarPubMed
Fujioka, Y, Hata, N, Akagi, Y, et al. Molecular diagnosis of diffuse glioma using a chip-based digital PCR system to analyze IDH, TERT, and H3 mutations in the cerebrospinal fluid. J Neuro-ONCOL. 2021;152:4754.CrossRefGoogle ScholarPubMed
Panditharatna, E, Kilburn, LB, Aboian, MS, et al. Clinically relevant and minimally invasive tumor surveillance of pediatric diffuse midline gliomas using patient-derived liquid biopsy. Clin Cancer Res. 2018;24:5850–9.CrossRefGoogle ScholarPubMed
Stallard, S, Savelieff, MG, Wierzbicki, K, et al. CSF H3F3A K27M circulating tumor DNA copy number quantifies tumor growth and in vitro treatment response. Acta neuropathologica communications. 2018;6:14.CrossRefGoogle ScholarPubMed
Mackay, A, Burford, A, Carvalho, D, et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell. 2017;32:520–37.CrossRefGoogle ScholarPubMed
Werbrouck, C, Evangelista, CC, Lobón-Iglesias, MJ et al. TP53 pathway alterations drive radioresistance in diffuse intrinsic pontine gliomas (DIPG). Clin Cancer Res. 2019;25:6788–800.CrossRefGoogle ScholarPubMed
Jang, SW, Song, SW, Kim, YH, et al. Clinical features and prognosis of diffuse midline glioma: a series of 24 cases. Brain Tumor Res Treat. 2022;10:255–64.CrossRefGoogle ScholarPubMed
Majzner, RG, Ramakrishna, S, Yeom, KW, et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature. 2022;603:934–41.CrossRefGoogle ScholarPubMed
Venneti, S, Kawakibi, AR, Ji, S, et al. Clinical efficacy of ONC201 in H3K27M-mutant diffuse midline gliomas is driven by disruption of integrated metabolic and epigenetic pathways. Ann Ny Acad Sci. 2023;13:2370–93.Google ScholarPubMed