Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T21:08:05.634Z Has data issue: false hasContentIssue false

Chronic Aluminum-Induced Motor Neuron Degeneration: Clinical, Neuropathological and Molecular Biological Aspects

Published online by Cambridge University Press:  18 September 2015

Michael J. Strong*
Affiliation:
Department of Clinical Neurological Sciences, The University of Western Ontario, London
Ralph M. Garruto
Affiliation:
Laboratory of Central Nervous System Studies, National Institutes of Health, Bethesda
*
Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada N6A 5A5
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The monthly intracisternal inoculation of young adult New Zealand white rabbits with low-dose (100 Μg) aluminum chloride induces aggregates of phosphorylated neurofilament that mimics the intraneuronal inclusions of amyotrophic lateral sclerosis. The chronic progressive myelopathy and topographically-specific motor neuron degeneration that occurs in the absence of suppressions of neurofilament messenger RNA levels in this model contrasts with the acute fulminant encephalomyelopathy and nonspecific gene suppressions that occur subsequent to high-dose (1000 Μg) aluminum chloride inoculations. Further analysis of this unique model of chronic motor system degeneration can be expected to provide additional insights into the pathogenesis of amyotrophic lateral sclerosis.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1991

References

REFERENCES

1.Juergens, SM, Kurland, LT, Okazaki, PH, et al. ALS in Rochester, Minnestoa. 1925–1977. Neurology 1980; 30: 463470.CrossRefGoogle Scholar
2.Forsgren, L, Almay, BGL, Holmgren, G, et al. Epidemiology of motor neuron disease in northern Sweden. Acta Neurol Scand 1983; 68: 2029.CrossRefGoogle ScholarPubMed
3.Murros, K, Fogelholm, R. Amyotrophic lateral sclerosis in Middle-Finland: an epidemiological study. Acta Neurol Scand 1983; 67: 4147.CrossRefGoogle ScholarPubMed
4.Hudson, AJ, Davenport, A, Harder, WJ. The incidence of amyotrophic lateral sclerosis in southwestern Ontario, Canada. Neurology 1986; 36: 15241528.CrossRefGoogle ScholarPubMed
5.Boman, K, Meurman, T. Prognosis of amyotrophic lateral sclerosis. Acta Neurol Scand 1967; 43: 489498.CrossRefGoogle ScholarPubMed
6.Rosen, AD. Amyotrophic lateral sclerosis. Clinical features and prognosis. Arch Neurol 1978; 35: 638642.CrossRefGoogle ScholarPubMed
7.Shiraki, HK, Yase, Y. Amyotrophic lateral sclerosis in Japan. In: Vinken, PJ, Bruyn, GW, eds. Handbook of Clinical Neurology, Vol 22. New York: Elsevier Publishing, 1975; 353419.Google Scholar
8.Gajdusek, DC, Salazar, AM. Amyotrophic lateral sclerosis and parkinsonian syndromes in high incidence among the Auyu and Jakai people of West New Guinea. Neurology 1982; 32: 107126.CrossRefGoogle ScholarPubMed
9.Garruto, RM. Amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam: Clinical, epidemiological, and genetic patterns. Am J Hum Biol 1989; 1: 367382.CrossRefGoogle ScholarPubMed
10.Garruto, RM. Cellular and molecular mechanisms of neuronal degeneration: Amyotrophic lateral sclerosis, parkinsonism-dementia and Alzheimer disease. Am J Hum Biol 1989; 1529–653.Google ScholarPubMed
11.Hirano, A, Hirano, M,. Dembitzer, HM. Pathological variants and extent of the disease process in amyotrophic lateral sclerosis. In: Hudson, AJ, ed. Amyotrophic Lateral Sclerosis. Concepts in Pathogenesis and Etiology. Toronto: University of Toronto Press, 1990: 166192.Google Scholar
12.Carpenter, S. Proximal axonal enlargement in motor neuron disease. Neurology 1968; 18: 841851.CrossRefGoogle ScholarPubMed
13.Hirano, A. Pathology of amyotrophic lateral sclerosis. In: Gajdusek, DC, Gibbs, CJ Jr., Alpers, M, eds. Slow, Latent and Temperate Virus Infections. National Institutes of Neurological Diseaes and Blindness Monograph No. 2. 1965, pp. 2327.Google Scholar
14.Hirano, A. Some current concepts on amyotrophic lateral sclerosis. Neurol Med (Tokyo) 1976; 4: 4351.Google Scholar
15.Chou, SM. Pathognomy of intraneuronal inclusions in ALS. In:. Tsubaki, Y, Toyokura, T, eds. Amyotrophic Lateral Sclerosis. Tokyo: University of Tokyo Press, 1979; 135176.Google Scholar
16.Hirano, A, Inoue, K. Early pathological changes in amyotrophic lateral sclerosis. Electron microscopic study of chromatolysis, spheroids and Bunina bodies. Neurol Med (Tokyo) 1980; 13: 148160.Google Scholar
17.Averback, P. Unusual particles in motor neuron disease. Arch Pathol Lab Med 1981; 105: 490493.Google ScholarPubMed
18.Schmidt, ML, Carden, MJ, Lee, VM-Y, et al. Phosphate dependent and independent neurofilament epitopes in the axonal swellings of patients with motor neuron disease and controls. Lab Invest 1987; 56: 282294.Google ScholarPubMed
19.Manetto, V, Sternberger, NH, Perry, G, et al. Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 1988; 47: 642653.CrossRefGoogle ScholarPubMed
20.Munoz, DG, Greene, C, Perl, DP, et al. Accumulation of phosphorylated neurofilaments in anterior horn motoneurons in amyotrophic lateral sclerosis patients. J Neuropathol Exp Neurol 1988; 47: 243248.CrossRefGoogle ScholarPubMed
21.Mizusawa, H, Matsumoto, S, Hirano, A, et al. Abnormal expression of phosphorylated neurofilament proteins in sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 1988; 24: 472.Google Scholar
22.Malamud, N, Hirano, A, Kurland, LT. Pathoanatomic changes in amyotrophic lateral sclerosis of Guam. Arch Neurol 1961; 15: 401415.CrossRefGoogle Scholar
23.Hirano, A, Arumugasamy, N, Zimmerman, HM. Amyotrophic lateral sclerosis. A comparison of Guam and classical cases. Arch Neurol 1967; 16: 357363.CrossRefGoogle ScholarPubMed
24.Hirano, A, Kurland, LT, Sayre, GP. Familial amyotrophic lateral sclerosis. Arch Neurol 1967; 16: 232243.CrossRefGoogle ScholarPubMed
25.Horton, WA, Eldridge, R, Brody, JA. Familial motor neuron disease. Evidence for at least three different types. Neurology 1976; 26: 400465.CrossRefGoogle ScholarPubMed
26.Yano, I, Yoshida, S, Uebayashi, Y, et al. Experimental study of degenerative CNS disease in monkeys. In: Abstracts of the International Conference of Amyotrophic Lateral Sclerosis, Kyoto, Japan, October 29–31, 1987; 136.Google Scholar
27.Yase, Y. Metal studies in ALS - further development. In: Tsubaki, T, Yase, Y, eds. Amyotrophic Lateral Sclerosis: Recent Advances in Research and Treatment. Amsterdam: Elsevier Science Publishers, 1988; 5965.Google Scholar
28.Garruto, RM, Shankar, SK, Yanagihara, R, et al. Low-calcium, high aluminum diet-induced motor neuron pathology in cynomolgus monkeys. Acta Neuropathol (Beri) 1989; 78: 210219.CrossRefGoogle ScholarPubMed
29.Strong, MJ, Yanagihara, R, Wolff, AV, et al. Experimental neurofilamentous aggregates: Acute and chronic models of aluminum-induced encephalomyelopathy in rabbits. In: Norris, FB, Rose, FC, eds. Amyotrophic Lateral Sclerosis-New Advances in Toxicology and Epidemiology. London: Smith-Gordon and Company Ltd. 1990; 157173.Google Scholar
30.Krekoski, CA, Mathew, A, Parhad, IM. Neuronal gene transcription is decreased with aluminum treatment. J Cell Biol 1988; 9: 123138.Google Scholar
31.Muma, NA, Troncoso, JC, Hoffman, PN, et al. Aluminum neurotoxicity: Altered expression of cytoskeletal genes. Mol Brain Res 1988; 3: 115122.CrossRefGoogle Scholar
32.Parhad, IM, Krekoski, CA, Mathew, A, et al. Neuronal gene expression in aluminum myelopathy. Cell Mol Neurobiol 1989; 9: 123138.CrossRefGoogle ScholarPubMed
33.Clark, AW, Tran, PM, Parhad, IM, et al. Neuronal gene expression in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 199; 48: 381.CrossRefGoogle Scholar
34.Strong, MJ, Wolff, AV, Wakayama, I, et al. Aluminum-induced chronic myelopathy in rabbits. Neurotoxicology 1991; 12: 922.Google ScholarPubMed
35.Nerurkar, VR, Strong, MJ, Wakayama, I, et al. Correlation between aluminum dose, clinicopathological changes and neurofilament mRNA expression in aluminum neurotoxicity. Soc Neurosci Abstr 1990; 16: 446.Google Scholar
36.Blanchard, BJ, Ingram, VM. Age-related neurofilament phosphorylation in Alzheimer disease. Neurobiol Aging 1989; 10: 253259.CrossRefGoogle Scholar
37.Sternberger, NA, Sternberger, LA, Ulrich, J. Aberrant neurofilament phosphorylation in Alzheimer disease. Proc Natl Acad Sci USA 1985; 82: 42744276.CrossRefGoogle ScholarPubMed
38.Strong, MJ, Garruto, RM. Isolation of fetal mouse motor neurons on discontinuous Percoli density gradients. In Vitro Cell Dev Biol 1989; 25: 939945.CrossRefGoogle Scholar
39.Strong, MJ, Garruto, RM. Aluminum neurotoxicity in vitro: A comparative analysis of dissociated fetal rabbit hippocampal and motor neuron-enriched cultures. Lab Invest 1991, in press.Google Scholar
40.Farnell, BJ, DeBoni, U, Crapper McLachlan, DR. Aluminum neurotoxicity in the absence of neurofibillary degeneration in CAI hippocampal neurons in vitro. Exp Neurol 1982; 78: 241258.CrossRefGoogle Scholar
41.Foy, CD, Chaney, RL, White, MC. The physiology of metal toxicity in plants. Ann Rev Plant Physiol 1978; 29: 511566.CrossRefGoogle Scholar
42.Roy, AK, Sharma, A, Talukder, G. Some aspects of aluminum toxicity in plants. Bot Rev 1988; 54: 145178.CrossRefGoogle Scholar
43.Crapper McLachlan, DR. Aluminum neurotoxicity: criteria for assigning a role in Alzheimer’s disease. In: Lewis, TE, ed. Environmental Chemistry and Toxicology of Aluminum. Michigan: Lewis Publishers, Inc. 1989; 299315.Google Scholar
44.Joshi, JG. Aluminum, a neurotoxin which affects diverse metabolic reactions. BioFactors 1990; 2: 163169.Google ScholarPubMed
45.Molitoris, BA, Froment, DH, Mackenzie, TA, et al. Citrate, a major factor in the toxicity of orally administered aluminum compounds. Kidney Inter 1989; 36: 949953.CrossRefGoogle Scholar
46.Klein, G, Alfrey, AL, Miller, NL, et al. Aluminum loading during total parenteral nutrition. Am J Clin Nutr 1982; 35: 14251429.CrossRefGoogle ScholarPubMed
47.DeBoni, U, Scott, JW, Crapper, DR. Intracellular aluminum binding: A histochemical study. Histochemistry 1974; 40: 3137.CrossRefGoogle Scholar
48.Karlik, SJ, Eichhorn, GL, Lewis, PN, Crapper, Dr. Interaction of aluminum species with deoxyribonucleic acid. Biochemistry 1980; 19: 59915998.CrossRefGoogle ScholarPubMed
49.Johnson, GVW, Jope, RS. Aluminum alters cyclic AMP and cyclic GMP levels but not presynaptic cholinergic markers in rat brain in vivo. Brain Res 1987; 403: 16.CrossRefGoogle Scholar
50.Johnson, GVW, Jope, RS. Phosphorylation of rat brain cytoskeletal proteins is increased after orally administered aluminum. Brain Res 1988; 456: 95103.CrossRefGoogle ScholarPubMed
51.Johnson, GVW, Xiahua, L, Jope, RS. Aluminum increases agonist-stimulated cyclic AMP production in rat cerebral cortical slices. J Neurochem 1989; 53: 258263.CrossRefGoogle ScholarPubMed
52.Pierson, KB, Evenson, MA. 200 Kd Neurofilament protein binds Al, Cu and Zn. Biochem Biophy Res Comm 1988; 152: 598605.CrossRefGoogle ScholarPubMed
53.Siegel, N, Haug, A. Aluminum interaction with calmodulin. Evidence for altered structure and function from optical and enzymatic studies. Biochimica et Biophysica Acta 1983; 744: 3646.CrossRefGoogle ScholarPubMed
54.Haug, AR, Caldwell, CR. Aluminum toxicity in plants. The role of plasma membrane and calmoudulin. In: St John, JB, Berlin, I, Jackson, PC, eds. Beltsville Symposia in Agricultural Research. G. Frontiers of membrane Research in Agriculture. Totowa, New Jersey: Rowman & Allanheld, 1985; 359382.Google Scholar
55.Weis, C, Haug, A. Aluminum-induced conformational changes in calmodulin after the dynamics of interaction with Melittin. Arch Biochem Biophys 1987; 254: 304312.CrossRefGoogle Scholar
56.Putterill, JJ, Gardner, RC. Proteins with potential to protect plants from Al3+ toxicity. Biochimica et Biophysica Acta 1988; 964: 137145.CrossRefGoogle Scholar
57.Bonhaus, DW, McCormack, KM, Mayor, GH, et al. The effects of aluminum on microtubular integrity using in vitro and in vivo models. Toxicol Lett 1980; 6: 141147.CrossRefGoogle ScholarPubMed
58.Liwnicz, BH, Kristensson, K, Wisniewski, HM, et al. Observations on axoplasmic transport in rabbits with aluminum-induced neurofibrillary tangles. Brain Res 1974; 80: 413420.CrossRefGoogle ScholarPubMed
59.Bates, LA, Boegman, RJ. The functional implications of experimentally produced neurofibillary tangles on axonal transport. Can Fed Biol Sci 1983; 26: 114.Google Scholar
60.Bizzi, A, Crane, R, Yoon, M, et al. The axonal transport of neurofilaments is impaired in aluminum intoxication. J Neuropathol Exp Neurol 1984; 41: 331.Google Scholar
61.Troncoso, JC, Hoffman, PN, Griffin, JW, et al. Aluminum intoxication: a disorder of neurofilament transport in motor neurons. Brain Res 1985; 342: 172175.CrossRefGoogle ScholarPubMed
62.Parhad, IM, Griffin, JW, Koves, JF. Aluminum intoxication in the visual system: Morphological and axonal transport studies. Neurology 1984; 34: 197198.Google Scholar
63.Kosik, KS, McCluskey, AH, Walsh, FX, et al. Axonal transport of cytoskeletal proteins in aluminum toxicity. Neurochem Pathol 1985; 3: 99108.CrossRefGoogle ScholarPubMed
64.Wisniewski, HM, Sturman, JA1, Shek, JW. Aluminum chloride induced neurofibrillary changes in the developing rabbit: A chronic animal model. Ann Neurol 1980; 8: 479490.CrossRefGoogle ScholarPubMed
65.Uemura, E. Intranuclear aluminum accumulation in chronic animals with experimenal neurofibrillary changes. Exp Neurol 1984; 85: 1018.CrossRefGoogle Scholar
66.Uemura, E, Ireland, WP. Synaptic density in chronic animals with experimental neurofibrillary change. Exp Neurol 1984; 85: 19.CrossRefGoogle Scholar
67.Bancher, C, Brunner, C, Lassman, H, et al. Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 1989; 477: 9099.CrossRefGoogle ScholarPubMed
68.Iqbal, K, Grundke-Iqbal, I, Zaidi, T, et al. Defective brain microtubule assembly in Alzheimer disease. Lancet 1985; 2: 421426.Google Scholar