Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T05:50:23.128Z Has data issue: false hasContentIssue false

Central Mechanisms of Tremor in Some Feline and Primate Models

Published online by Cambridge University Press:  18 September 2015

Y. Lamarre*
Affiliation:
Centre de Recherche en Sciences Neurologiques, Départment de physiologie, Université de Montréal
A.J. Joffroy
Affiliation:
Centre de Recherche en Sciences Neurologiques, Départment de physiologie, Université de Montréal
M. Dumont
Affiliation:
Centre de Recherche en Sciences Neurologiques, Départment de physiologie, Université de Montréal
C. De Montigny
Affiliation:
Centre de Recherche en Sciences Neurologiques, Départment de physiologie, Université de Montréal
F. Grou
Affiliation:
Centre de Recherche en Sciences Neurologiques, Départment de physiologie, Université de Montréal
J.P. Lund
Affiliation:
Centre de Recherche en Sciences Neurologiques, Départment de physiologie, Université de Montréal
*
Départment de physiologie, Université de Montréal, C.P. 6208, Succursale A, Montréal, P.Q., H3C 3T8
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For several years our interest has been in a postural Parkinson-like tremor at 4-6/sec. which can be produced in the monkey by lesions of the central nervous system. We have also studied the effects of harmaline, a drug which evokes or intensifies the Parkinson-like tremor in lesioned animals and which also induces a fine, generalized tremor at 7-12/sec. in normal animals. The results obtained so far indicate that these two types of tremor are generated by two independent central mechanisms which do not require the integrity of peripheral feedback loops. The experimental Parkinson-like tremor is generated by a thalamo-cortical mechanism while the olivo-cerebellar system is responsible for the faster ”physiological“ tremor. Similar tremor mechanisms may be involved in some movement disorders in man.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1975

References

REFERENCES

Albe-Fessard, D., Arfel, G., Guiot, G., Derome, P., De la Herran, J., Korn, H., Hertzog, E., Vourc’h, G., et Aleonard, P. (1963). Activités électriques caractéristiques de quelques structures cérébrales chez l’homme. Ann. chir., 17, 11851214.Google Scholar
Albe-Fessard, D.Guiot, G. and Hardy, J. (1963). Electrophysiological localization and identification of subcortical structures in man by recording spontaneous and evoked activities. Electroenceph. clin. Neurophysiol., 15, 10521053.Google Scholar
Albe-Fessard, D., Guiot, G., Lamarre, Y. and Arfel, G. (1966). Activation of thalamo-cortical projections related to tremorgenic processes. In: The thalamus, ed. by Purpura, D.P., and Yahr, M.D., Columbia University Press, New York, pp. 237253.Google Scholar
Alberts, W.W. (1969). Parkinsonian tremor and cerebral potentials. In: Third Symposium on Parkinson’s Disease, Livingstone, Edinburgh (Gillingham, F.J. and Donaldson, I.M.L., eds.) pp. 146149.Google Scholar
Alberts, W.W. (1972). A simple view of Parkinsonian tremor. Electrical stimulation of cortex adjacent to the Rolandic fissure in awake man. Brain Res., 44, 357369.CrossRefGoogle Scholar
Alberts, W.W., Wright, E. W. and Feinstein, B. (1969). Cortical potentials and Parkinsonian tremor. Nature(London), 221, 670672.CrossRefGoogle ScholarPubMed
Armstrong, D.M., Eccles, J.C., Harvey, R.J. and Matthews, P.B.C. (1968). Responses in the dorsal accessory olive of the cat to stimulation of hind limb afferents. J. Physiol., London, 194, 125145.CrossRefGoogle ScholarPubMed
Bates, J.A.V. (1969). The significance of tremor phasic units in the human thalamus. In: Third Symposium on Parkinson Disease, Livingstone, Edinburgh (Gillingham, F.J. and Donaldson, I.M.L. eds.), pp. 118124.Google Scholar
Battista, A.F., Nakatani, S., Goldstein, M. and Anagnoste, G. (1970). Effect of harmaline in monkeys with central nervous system lesions. Exp. Neurol., 28, 513524.CrossRefGoogle ScholarPubMed
Bell, C.C. and Kawasaki, R. (1972). Relation among climbing fiber responses of nearby Purkinje cells, J. Neurophysiol., 35, 155169.CrossRefGoogle ScholarPubMed
Canessa, M., Jaimovich, E. and De la Fuente, M., (1973). Harmaline: a competitive inhibitor of Na ion in the (Na+ + K+) — ATPase system. J. Membrane Biol., 13, 263282.CrossRefGoogle ScholarPubMed
Cordeau, J.P., Gybels, J., Jasper, H.H. and Poirier, L.J. (1960). Microelectrode studies of unit discharges in the sensori-motor cortex. Investigations in monkeys with experimental tremor. Neurology, 10, 591600.CrossRefGoogle Scholar
Cordeau, J.P. and Lamarre, Y. (1966). Further studies on patterns of central unit activity in relation with tremor. J. Neurosurg., 24, 213218.Google Scholar
Crill, W.E. (1970). Unitary multiple-spiked responses in cat inferior olive nucleus. J. Neurophysiol., 33, 199209.CrossRefGoogle ScholarPubMed
Crowell, R.M., Perret, E., Siegfried, J. and Villoz, J.P. (1968). Movement units and tremor phasic units in the human thalamus. Brain Res., 11, 481488.CrossRefGoogle ScholarPubMed
De Montigny, C. and Lamarre, Y. (1973). Rhythmic activity induced by harmaline in the olivo-cerebello-bulbar system of the cat. Brain Res., 53, 8195.CrossRefGoogle ScholarPubMed
De Montigny, C. and Lamarre, Y. (1974). Activity in the olivo-cerebello-bulbar system of the cat during ibogaline- and oxotremorineinduced tremor. Brain Res., 82, 369373.CrossRefGoogle ScholarPubMed
Dempsey, E.W. and Morison, R.J. (1942). The production of rhythmically recurrent cortical potentials after localized' thalamic stimulation. Amer. J. Physiol., 135, 293300.CrossRefGoogle Scholar
Dumont, M. and Lamarre, Y. (1973). Experimental tremor following CNS lesions in monkeys. Trans, am. neurol. Ass., 98, 3739.Google ScholarPubMed
Ferin, M., Gregorian, R.A. and Strata, P. (1971). Mossy and climbing fiber activation in the cat cerebellum by stimulation of the labyrinth. Exp. Brain Res., 12, 117.CrossRefGoogle ScholarPubMed
Goldberger, M.E. and Growden, J.H. (1971). Tremor at rest following cerebellar lesions in monkeys: effect of L-Dopa administration. Brain Res., 27, 183187.CrossRefGoogle ScholarPubMed
Hardy, J. and Bertrand, C. (1966). Electrophysiological localization and identification. J. Neurosurg., 24, 410414.Google Scholar
Jasper, H.H. and Bertrand, G. (1966a). Recording from microelectrode s in stereotaxic surgery for Parkinson’s disease. J. Neurosurg., 24, 219221.Google Scholar
Jasper, H.H. and Bertrand, G. (1966b). Thalamic units involved in somatic sensation and voluntary and involuntary movements in man. In: The thalamus, Columbia University Press (Purpura, D. ed.), 365384.Google Scholar
Jasper, H.H., Lamarre, Y. and Joffroy, A. (1972). The effect of local cooling of the motor cortex upon experimental Parkinson-like tremor, Shivering, voluntary movements, and thalamic unit activity in the Monkey. In: Cortico-thalamic Projections and Sensorimotor Activities, pp. 461473, ed. by Frigyesi, T., Rinvik, E. and Yahr, M.D., Raven Press, New York.Google Scholar
Joffroy, A.J. and Lamarre, Y. (1971). Rhythmic unit firing in the precentral cortex in relation with postural tremor in a deafferented limb. Brain Res., 27, 386389.CrossRefGoogle Scholar
Joffroy, A.J. and Lamarre, Y. (1974). Single cell activity in the ventral lateral thalamus of the unanesthetized monkey. Exp. Neurol., 42, 116.CrossRefGoogle ScholarPubMed
King, J.S., Martin, G.F. and Bowman, H.H. (1975). The direct spinal area of the inferior olivary nucleus: an electron microscopic study. Exp. Brain Res., 22, 1324.CrossRefGoogle ScholarPubMed
Lamarre, Y. (1975). Tremorgenic mechanisms in primates. Advances in Neurology, (Meldrum, B.S., and Marsden, C.D., eds.), Raven Press, New York, 10, 2334.Google Scholar
Lamarre, Y. and Cordeau, J.P. (1967). Etude du mécanisme physiopathologique responsable chez le Singe, d’un tremblement expérimental de type parkinsonien. Actualités neurophysiol., 7, 141166.Google Scholar
Lamarre, Y. and Dumont, M. (1972). Activity of cerebellar and lower brain stem neurons in monkeys with Harmaline-induced tremor. In: Medical Primatology 1972, pp. 274281, ed. by Goldsmith, E.I. and Moor-Jankowski, J., Karger, Basel.Google Scholar
Lamarre, Y., Filion, M. and Cordeau, J.P. (1971). Neuronal discharges of the ventrolateral nucleus of the thalamus during sleep and wakefulness in the cat. I — Spontaneous activity. Exp. Brain Res., 12, 480498.CrossRefGoogle ScholarPubMed
Lamarre, Y., De Montigny, C., Dumont, M. and Weiss, M. (1971). Harmaline-induced rhythmic activity of cerebellar and lower brain stem neurons. Brain Res., 32, 246250.CrossRefGoogle ScholarPubMed
Lamarre, Y., and Joffroy, A.J. (1970). Thalamic unit activity in monkey with experimental tremor. In: L-Dopa and Parkinsonism, pp. 163170, ed. by Barbeau, A. and Mcdowell, F.H., Davis, Philadelphia.Google Scholar
Lamarre, Y. and Joffroy, A.J. (1971). Spontaneous unit activity in the ventrolateral thalamus of the chronic monkey. Int. J. Neurol., 8, 190197.Google Scholar
Lamarre, Y. and Weiss, M. (1973). Harmalineinduced rhythmic activity of alpha and gamma motoneurons in the cat. Brain Res., 63, 430434.CrossRefGoogle Scholar
Lance, J.W., Schwab, R.S. and Peterson, E.A. (1963). Action tremor and the cog wheel phenomenon in Parkinson’s disease. Brain, 86, 95110.CrossRefGoogle Scholar
Larochelle, L., Bedard, P., Boucher, R. and Poirier, L.J. (1970). The rubro-olivocerebello-rubral loop and postural tremor in the monkey. J. neurol. Sci., 11, 5364.CrossRefGoogle ScholarPubMed
Leblanc, F.E. and Cordeau, J.P. (1969). Modulation of pyramidal tract cell activity by ventrolateral thalamic regions. Its possible role in tremorogenic mechanisms. Brain Res., 14, 255270.CrossRefGoogle ScholarPubMed
Llinas, R., Baker, R. and Sotelo, C. (1974). Electrotonic coupling between neurons in cat inferior olive. J. Neurophysiol., 37, 560571.CrossRefGoogle ScholarPubMed
Llinas, R. and Volkind, R.A. (1973). The olivo-cerebellar system: Functional properties as revealed by harmaline-induced tremor. Exp. Brain Res., 18, 6987.CrossRefGoogle ScholarPubMed
Massion, J., Angaut, P. et Albe-Fessard, D. (1965). Activités évoquées chez le chat dans la region du nucleus ventralis lateralis par diverses stimulations sensorielles. II. Etude microphysiologique. Electroenceph. clin. Neurophysiol., 19, 452469.CrossRefGoogle Scholar
Merton, P.A., Morton, H.B. and Rashbass, C. (1967). Visual feedback in hand tremor. Nature, 216, 583584.CrossRefGoogle ScholarPubMed
Molina-Negro, P. and Hardy, J. (1971). Etude sémiologique des tremblements. Union Med. Can., 100, 879895.Google Scholar
Ohye, C., Bouchard, R., Larochelle, L., Bedard, P., Boucher, R., Raphy, B. and Poirier, L.J. (1970). Effect of dorsal rhizotomy on postural tremor in the monkey. Exp. Brain Res., 10, 140150.CrossRefGoogle ScholarPubMed
Poirier, L.J. (1960). Experimental and histological study of midbrain dyskinesias. J. Neurophysiol., 23, 534551.CrossRefGoogle ScholarPubMed
Poirier, L.J. (1971). “The development of animal models for studies in Parkinson’s disease.” In: Recent advances in Parkinson’s disease, Davis, Philadelphia, Pa. (Mcdowell, F.H. and Markham, C.H., eds.), pp. 84117.Google Scholar
Poirier, L.J., Sourkes, T.L., Bouvier, G., Boucher, R. and Carabin, S. (1966). Striatal amines, experimental tremor and the effect of harmaline in the monkey. Brain. 89, 3752.CrossRefGoogle ScholarPubMed
Pollock, L.J. and Davis, L. (1930). Muscle tone in Parkinsonian states. Arch. Neurol. Psychiat (Chic.)., 23, 303319.CrossRefGoogle Scholar
Purpura, D.P. (1969). Interneuronal mechanisms in synchronization and desynchronization of thalamic activity. pp. 467496. In: The interneuron, ed. by Brazier, M.A.B.Univ. Calif. Press, Los Angeles.CrossRefGoogle ScholarPubMed
Purpura, D.P. (1972a). Synaptic mechanisms in coordination of activity in thalamic internuncial common paths. In: Cortico-Thalamic Projections and Sensorimotor activities, pp. 721751, ed. by Frigyesi, T., Rinvik, E. and Yahr, M.D.Raven Press, New York.Google Scholar
Purpura, D.P. (1972b). Intracellular studies of synaptic organizations in the mammalian brain, pp. 257302. In: Structure and function of synapses, ed. by Pappas, G.D. and Purpura, D.P.Raven Press, New York.Google Scholar
Sedgwick, E.G. and Williams, T.D. (1967). Responses of single units in the inferior olive to stimulation of the limb nerves, peripheral skin receptors, cerebellum, caudate nucleus and motor cortex. J. Physiol., London, 189, 261279.CrossRefGoogle ScholarPubMed
Sepulveda, F.V. and Robinson, J.W.L. (1974). Harmaline, a potent inhibitor of sodiumdependent transport. Biochimica et Biophysica Acta., 373, 527531.CrossRefGoogle ScholarPubMed
Sotelo, C., Llinas, R. and Baker, R. (1974). Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J. Neurophysiol., 37, 541559.CrossRefGoogle ScholarPubMed
Sutton, G.G. and Sykes, K. (1967). The effect of withdrawal of visual presentation of errors upon the frequency spectrum of tremor in a manual task. J. Physiol., London, 190, 281293.CrossRefGoogle Scholar
Walshe, F.M.R. (1924). Observations on the nature of the muscular regidity of paralysis agitous, and on its relationship to tremor. Brain, 47, 159177.CrossRefGoogle Scholar