The theory of operator algebras in Banach spaces generated by Boolean algebras of projections is by now well known. It is systematically exposed in the penetrating studies of W. Bade, [1], [2] and [6, Chapter XVII]. Many of these results, a priori independent on normability of the underlying space, have recently been extended to the setting of locally convex spaces; see [3], [4], [5], [11] and [15], for example.
However, one of Bade's fundamental results, stating that the closed algebra generated by a complete Boolean algebra in the uniform operator topology is the same as the closed algebra that it generates in the weak operator topology, has remained remarkably resistant in attempts to extend it to locally convex spaces. Recently however, a class of Boolean algebras in non-normable spaces, called boundedly σ-complete Boolean algebras, was exhibited in which the analogue of Bade's result is valid, [14; Theorem 5.3].