Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T05:29:08.047Z Has data issue: false hasContentIssue false

Weak Solutions for Semi-Martingales

Published online by Cambridge University Press:  20 November 2018

Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The fundamental theorem of this paper is stated in Section 8. In this theorem, the stochastic differential equation dX = a(X)dZ is studied when Z is a *-dominated (cf. [15]) Banach space valued process and a is a predictable functional which is continuous for the uniform norm.

For such an equation, the existence of a “weak solution” is stated; actually, the notion of weak solution here considered is more precise than this one introduced by Strook and Varadhan (cf. [30], [31], [23]).

Namely, this weak solution is a probability, so-called “rule,” defined on (DH × Ω), DH being the classical Skorohod space of all the cadlag sample paths and Ω is the initial space which Z is defined on: the marginal distribution of R on Ω is the given probability P on Ω. This concept of rule is defined in Section 3.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1981

References

1. Aldous, D. J., Limit theorems for subsequences of arbitrarily-dependent sequences of random variables, Z. fur Wahr. 40 (1977), 5982.Google Scholar
2. Aldous, D. J. and Eagleson, G. K., On mixing and stability of limit theorems, Annals of Prob. £‘ (1978), 325331.Google Scholar
3. Baxter, J. R. and Chacon, R. V., Compactness of stopping times, Z. fur Wahr. 40 (1977), 169182.Google Scholar
4. Billingsley, P., Convergence of probability measures, (Wiley and Sons, New York, 1968).Google Scholar
5. Dellacherie, C., Un survol de la théorie de Vintégrale stochastique, Proceedings of the International Congress of Mathematicians, Helsinki (1978).Google Scholar
6. Dellacherie, C., Convergence en probabilité et topologie de Baxter Chacon, Sém. Proba. Strasbourg XII, Lect. Notes in Math. 649, 424 (Springer, Berlin, 1978).Google Scholar
7. Dellacherie, C. and Meyer, P. A., Probabilités et potentiel I, (2ème édition, Hermann, Paris, 1976).Google Scholar
8. Jacod, J., Calcul stochastique et problèmes de martingales, Lect. Notes in Math. 724 (Springer Verlag, Berlin, 1979).Google Scholar
9. Jacod, J., Weak and strong solutions of stochastic differential equations, Stochastics (1980).Google Scholar
10. Jacod, J. and Memin, J., Existence of weak solutions for stochastic differential equations driven by semimartingales, Preprint.Google Scholar
11. Jacod, J. and Memin, J., Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilités, Preprint.Google Scholar
12. Krylow, , Quasi diffusion processes, Theory of probability and applications (1966).Google Scholar
13. Lebedev, V. A., On the existence of a solution of the stochastic equation with respect to a martingale and a stochastic measure, Int. Symp. on Stoch. Diff. Equations, Vilnius (1978), 6569.Google Scholar
14. Metivier, M. and Pellaumail, J., Notions de base sur Vintégrale stochastique, Séminaire de Probabilités de Rennes (1976).Google Scholar
15. Metivier, M. and Pellaumail, J., Stochastic integration (Academic Press, 1980).Google Scholar
16. Meyer, P. A., Inégalités de normes, in Lecture Notes 64–9, Srpinger Verlag.Google Scholar
17. Meyer, P. A., Convergence faible et compacité des temps d'arrêt, d'après Baxter et Chacon, Sém. Proba. XII, 411423, Lect. Notes in Math. 649 (Springer Verlag, Berlin, 1978).Google Scholar
18. Pellaumail, J., Sur l'intégrale stochastique et la décomposition de Doob-Meyer, Astérisque 9, Soc. Math. France (1973).Google Scholar
19. Pellaumail, J., On the use of group-valued measures in stochastic processes, Symposia Mathernatica 22 (1977).Google Scholar
20. Pellaumail, J., Convergence en règle, C.R.A.S. 290 (A) (1980), 289291.Google Scholar
21. Pellaumail, J., Solutions faibles pour des processus discontinus, C.R.A.S. 290 (A) (1980), 431433.Google Scholar
22. Pellaumail, J., Weak solutions for Π*-processes, Preprint, Vancouver, janvier (1980).Google Scholar
23. Priouret, P., Processus de diffusion et équations différentielles stochastiques, dans Lecture Notes 390 (Springer Verlag, 1974).Google Scholar
24. Prokhorov, Yu. V., Probability distributions in functional spaces, Uspelin Matem. Nank., N.S. 55, 167 (1953).Google Scholar
25. Renyi, A., On stable sequences of events, Sankhya Ser. A, 25 (1963), 293302.Google Scholar
26. Renyi, A., Probability theory, (North Holland, Amsterdam, 1970).Google Scholar
27. Schal, M., Conditions for optimality in dynamic programming and for the limit of restages optimal policies to be optimal, Z. fur Wahr. 32 (1975), 179196.Google Scholar
28. Shorokhod, A. V., Limit theorems for stochastic processes, Theo. Proba. and Appl. 1 (SIAM Translation) (1955), 261–240.Google Scholar
29. Strieker, C., Quasimartingales, martingales locales, seminartingales etfiltrations, Z. fur Wahr. 39 (1977), 5563.Google Scholar
30. Stroock, D. W. and Varadhan, S. R. S., Diffusion processes with continuous coefficients, Coram, in Pure and Appl. Math. 22 (1969).Google Scholar
31. Stroock, D. W. and Varadhan, S. R. S., Multidimensional diffusion processes (Springer Verlag, Berlin 1979).Google Scholar