Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-19T01:52:50.714Z Has data issue: false hasContentIssue false

On Two Exponents of Approximation Related to a Real Number and Its Square

Published online by Cambridge University Press:  20 November 2018

Damien Roy*
Affiliation:
Département de Mathématiques, Université d'Ottawa, 585 King Edward, Ottawa, ON, K1N 6N5 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For each real number $\xi$, let $\widehat{{{\lambda }_{2}}}\left( \xi \right)$ denote the supremum of all real numbers $\text{ }\!\!\lambda\!\!\text{ }$ such that, for each sufficiently large $X$ , the inequalities $\left| {{x}_{0}} \right|\,\le \,X,\,\left| {{x}_{0}}\xi \,-\,{{x}_{1}} \right|\,\le \,{{X}^{-\lambda \text{ }}}$ and $\left| {{x}_{0}}{{\xi }^{2}}\,-\,{{x}_{2}} \right|\,\le \,{{X}^{-\lambda \text{ }}}$ admit a solution in integers ${{x}_{0}},\,{{x}_{1}}$ and ${{x}_{2}}$ not all zero, and let $\widehat{{{\omega }_{2}}}\left( \xi \right)$ denote the supremum of all real numbers $\omega $ such that, for each sufficiently large $X$, the dual inequalities $\left| {{x}_{0}}\,+\,{{x}_{1}}\xi \,+\,{{x}_{2}}{{\xi }^{2}} \right|\,\le \,{{X}^{-\omega }}$, $\left| {{x}_{1}} \right|\,\le \,X$ and $\left| {{x}_{2}} \right|\,\le \,X$ admit a solution in integers ${{x}_{0}},\,{{x}_{1}}$ and ${{x}_{2}}$ not all zero. Answering a question of Y. Bugeaud and M. Laurent, we show that the exponents $\widehat{{{\lambda }_{2}}}\left( \xi \right)$ where $\xi$ ranges through all real numbers with $[\mathbb{Q}(\xi )\,:\mathbb{Q}]\,>\,2$ form a dense subset of the interval $\left[ 1/2,\,\left( \sqrt{5}\,-\,1 \right)/2 \right]$ while, for the same values of $\xi$, the dual exponents $\widehat{{{\omega }_{2}}}\left( \xi \right)$ form a dense subset of $\left[ 2,\,\left( \sqrt{5}\,+\,3 \right)/2 \right]$. Part of the proof rests on a result of V. Jarník showing that $\widehat{{{\lambda }_{2}}}\left( \xi \right)=1-{{\hat{\omega }}_{2}}{{\left( \xi \right)}^{-1}}$ for any real number $\xi$ with $[\mathbb{Q}(\xi )\,:\mathbb{Q}]\,>\,2$.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2007

References

[1] Allouche, J.-P., Davison, J. L., Queffélec, M., Zamboni, L. Q., Transcendence of Sturmian or morphic continued fractions. J. Number Theory 91(2001), no. 1, 3966.Google Scholar
[2] Arbour, B. and Roy, D., A Gel’fond type criterion in degree two. Acta Arith. 11(2004), no. 1, 97103.Google Scholar
[3] Bugeaud, Y. and Laurent, M., Exponents of Diophantine approximation and sturmian continued fractions. Ann Inst. Fourier (Grenoble) 55(2005), no. 3, 773804.Google Scholar
[4] Davenport, H. and Schmidt, W. M., Approximation to real numbers by quadratic irrationals. Acta Arith. 13(1967), 169176.Google Scholar
[5] Davenport, H. and Schmidt, W. M., Approximation to real numbers by algebraic integers. Acta Arith. 15(1969), 393416.Google Scholar
[6] Fischler, S., Spectres pour l’approximation d’un nombre réel et de son carré. C. R. Acad. Sci. Paris 339(2004), no. 10, 679682.Google Scholar
[7] Jarník, V., Zum Khintchineschen Übertragungssatz. Trudy Tbilisskogo mathematicheskogo instituta im. A. M. Razmadze = Travaux de l’Institut mathématique de Tbilissi 3(1938), 193212.Google Scholar
[8] Roy, D., Approximation simultanée d’un nombre et de son carré. C. R. Acad. Sci., Paris 336(2003), no. 1, 16.Google Scholar
[9] Roy, D., Approximation to real numbers by cubic algebraic integers. I. Proc. London Math. Soc. 88(2004), no. 1, 4262.Google Scholar
[10] Roy, D., Approximation to real numbers by cubic algebraic integers. II. Ann. of Math. 158(2003), no. 3, 10811087.Google Scholar
[11] Roy, D., Diophantine approximation in small degree. In: Number Theory, CRM Proceedings and Lecture Notes 36, American Mathematical Society, Providence, RI, 2004, pp. 269285.Google Scholar
[12] Schmidt, W. M., Diophantine Approximation, Lecture Notes in Mathematics 785, Springer-Verlag, Berlin, 1980.Google Scholar