Published online by Cambridge University Press: 20 November 2018
We shall say that a plane set D has the Kakeya property if a unit segment can be turned continuously in D through 360° back to its original position. The famous solution of this problem by A. S. Besicovitch (1; 2; 4; 5; 6), to the effect that there are sets of arbitrarily small area having the Kayeka property, leaves open the problem obtained by adding the new condition that the set D be also simply connected. Since we do not know whether there is an attainable minimum, we define the Kakeya constant K to be the greatest lower bound of areas of simply connected sets having the Kakeya property. We shall refer to such sets as Kakeya sets.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.