Article contents
On Permutability and Submultiplicativity of Spectral Radius
Published online by Cambridge University Press: 20 November 2018
Abstract
Let r(T) denote the spectral radius of the operator T acting on a complex Hilbert space H. Let S be a multiplicative semigroup of operators on H. We say that r is permutable on 𝓢 if r(ABC) = r(BAC), for every A,B,C ∈ 𝓢. We say that r is submultiplicative on 𝓢 if r(AB) ≤ r(A)r(B), for every A, B ∈ 𝓢. It is known that, if r is permutable on 𝓢, then it is submultiplicative. We show that the converse holds in each of the following cases: (i) 𝓢 consists of compact operators (ii) 𝓢 consists of normal operators (iii) 𝓢 is generated by orthogonal projections.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1995
References
- 8
- Cited by