Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T22:36:09.112Z Has data issue: false hasContentIssue false

On Mœglin's Parametrization of Arthur Packets for p-adic Quasisplit Sp(N) and SO(N)

Published online by Cambridge University Press:  20 November 2018

Bin Xu*
Affiliation:
Department of Mathematics and Statistics, University of Calgary, 2500 University Dr. NW Calgary, AB, T2N 1N4 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a survey on Mœglin's construction of representations in the Arthur packets for $p$-adic quasisplit symplectic and orthogonal groups. The emphasis is on comparing Mœglin's parametrization of elements in the Arthur packets with that of Arthur.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[ABV92] Adams, J.,Barbasch, D., and Vogan, D., The Langlands classification and irreducible characters for real reductive groups. Progress in Mathematics, 104, Birkhäuser Boston, Inc., Boston, MA, 1992.http://dx.doi.org/10.1007/978-1-4612-0383-4 Google Scholar
[Artl3] Arthur, J., The endoscopie classification of representations: orthogonal and symplectic groups. American Mathematical Society Colloquium Publications, 61, American Mathematical Society, Providence, RI, 2013.http://dx.doi.Org/10.1090/coll/061 Google Scholar
[HenOO] Henniart, G., Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique. Invent. Math. 139(2000), no. 2, 439455.http://dx.doi.Org/10.1OO7/sOO222OO5OO12 Google Scholar
[HirO4] Hiraga, K., On functoriality ofZelevinski involutions. Compos. Math. 140(2004), no. 6, 16251656.http://dx.doi.Org/10.1112/S0010437X04000892 Google Scholar
[HT01] Harris, M. and Taylor, R., The geometry and cohomology of some simple Shimura varieties. Annals of Mathematics Studies, 151, Princeton University Press, Princeton, NJ, 2001.Google Scholar
[Mœg06a] Moeglin, C., Paquets d-Arthur pour les groupes classiques; point de vue combinatoire. arxiv:math/0610189 Google Scholar
[MœgO6b] Moeglin, C., Sur certains paquets d'Arthur et involution d'Aubert-Schneider-Stuhler généralisée. Represent. Theory 10(2006), 86129.http://dx.doi.org/10.1090/S1088-4165-06-00270-6 Google Scholar
[Mœg09] Moeglin, C., Paquets d'Arthur discrets pour un groupe classique p-adique, Automorphic forms and L-functions II Local aspects. Contemp. Math., 489, American Mathematical Society, Providence, RI, 2009, pp. 179257.http://dx.doi.Org/10.1090/conm/489/09549 Google Scholar
[Mœgl0] Moeglin, C. , Holomorphie des opérateurs d'entrelacement normalisés à l'aide des paramétres d'Arthur. Canad. J. Math. 62(2010), no. 6,13401386.http://dx.doi.org/10.4153/CJM-2010-074-6 Google Scholar
[Mœglla] Moeglin, C., Conjecture d'Adams pour la correspondance de Howe et filtration de Kuala. Arithmetic geometry and automorphic forms, Adv. Lect. Math. (ALM), 19, Int. Press, Somerville, MA, 2011, pp. 445503.Google Scholar
[Mœgllb] Moeglin, C., Image des opérateurs d'entrelacements normalisés et pôles des séries d'Eisenstein. Adv. Math. 228(2011), no. 2, 10681134.http://dx.doi.Org/10.101 6/j.aim.2O11.06.003 Google Scholar
[Mœgllc] Moeglin, C., Multiplicité 1 dans les paquets d'Arthur aux places p-adiques. In: On certain L-functions, Clay Math. Proc. 13, American Mathematical Society, Providence, RI, 2011, pp. 333374.Google Scholar
[MT02] Mœglin, C. and Tadic, M., Construction of discrete series for classical p-adic groups. J. Amer. Math. Soc. 15(2002), no. 3, 715786. http://dx.doi.Org/10.1090/S0894-0347-02-00389-2 Google Scholar
[MW89] Mœglin, C. and Waldspurger, J.-L., Le spectre résiduel de GL(n). Ann. Sci. École Norm. Sup. (4) 22(1989), no. 4, 605674.Google Scholar
[MW06] Mœglin, C., Sur le transfert des traces d'un groupe classique p-adique à un groupe linéaire tordu. Selecta Math. (N.S.) 12(2006), no. 3-4, 433515.http://dx.doi.org/10.1007/s00029-006-0026-0 Google Scholar
[NgôlO] Ngô, B. C., Le lemme fondamental pour les algébres de Lie. Publ. Math. Inst. Hautes Études Sci. 111(2010), 1169.http://dx.doi.org/10.1007/s10240-010-0026-7 Google Scholar
[Schl3] Scholze, P., The local Langlands correspondence for GLn over p-adic fields. Invent. Math. 192(2013), 663715.http://dx.doi.Org/10.1 OO7/sOO222-O12-0420-5 Google Scholar
[Tad86] Tadić, M., Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case). Ann. Sci. École Norm. Sup. (4) 19(1986), no. 3, 335382.Google Scholar
[Wal95] Waldspurger, J.-L., Une formule des traces locale pour les algébres de Lie p-adiques. J. Reine Angew. Math. 465(1995), 4199.http://dx.doi.Org/10.1515/crll.1 995.465.41 Google Scholar
[Wal97] Waldspurger, J.-L., Le lemme fondamental implique le transfert. Compositio Math. 105(1997), no. 2,153236.http://dx.doi.Org/10.1023/A:10001 031122 68 Google Scholar
[WalO6] Waldspurger, J.-L., Endoscopie et changement de caractéristique. J. Inst. Math. Jussieu 5(2006), no. 3, 423525.http://dx.doi.Org/1 0.101 7/S1474748006000041 Google Scholar
[WalO8] Waldspurger, J.-L., L'endoscopie tordue n'est pas si tordue. Mem. Amer. Math. Soc. 194(2008), no. 908. http://dx.doi.Org/10.1090/memo/0908 Google Scholar
[Xul5] Xu, B., On the cuspidal support of discrete series for p-adic quasisplit Sp( N) and SO(N). arxiv:1 504.08364 Google Scholar