No CrossRef data available.
Article contents
On Mœglin's Parametrization of Arthur Packets for p-adic Quasisplit Sp(N) and SO(N)
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We give a survey on Mœglin's construction of representations in the Arthur packets for $p$-adic quasisplit symplectic and orthogonal groups. The emphasis is on comparing Mœglin's parametrization of elements in the Arthur packets with that of Arthur.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2017
References
[ABV92]
Adams, J.,Barbasch, D., and Vogan, D., The Langlands classification and irreducible characters for real reductive groups.
Progress in Mathematics,
104, Birkhäuser Boston, Inc., Boston, MA, 1992.http://dx.doi.org/10.1007/978-1-4612-0383-4
Google Scholar
[Artl3]
Arthur, J., The endoscopie classification of representations: orthogonal and symplectic groups.
American Mathematical Society Colloquium Publications, 61, American Mathematical Society, Providence, RI, 2013.http://dx.doi.Org/10.1090/coll/061
Google Scholar
[HenOO]
Henniart, G., Une preuve simple des conjectures de Langlands pour GL(n) sur un corps
p-adique.
Invent. Math.
139(2000), no. 2, 439–455.http://dx.doi.Org/10.1OO7/sOO222OO5OO12
Google Scholar
[HirO4]
Hiraga, K., On functoriality ofZelevinski involutions.
Compos. Math.
140(2004), no. 6,
1625–1656.http://dx.doi.Org/10.1112/S0010437X04000892
Google Scholar
[HT01]
Harris, M. and Taylor, R., The geometry and cohomology of some simple Shimura varieties.
Annals of Mathematics Studies, 151, Princeton University Press, Princeton, NJ, 2001.Google Scholar
[Mœg06a]
Moeglin, C., Paquets d-Arthur pour les groupes classiques; point de vue combinatoire.
arxiv:math/0610189
Google Scholar
[MœgO6b]
Moeglin, C., Sur certains paquets d'Arthur et involution d'Aubert-Schneider-Stuhler généralisée.
Represent. Theory
10(2006), 86–129.http://dx.doi.org/10.1090/S1088-4165-06-00270-6
Google Scholar
[Mœg09]
Moeglin, C., Paquets d'Arthur discrets pour un groupe classique p-adique, Automorphic forms
and L-functions II Local aspects.
Contemp. Math., 489, American Mathematical Society,
Providence, RI,
2009, pp. 179–257.http://dx.doi.Org/10.1090/conm/489/09549
Google Scholar
[Mœgl0]
Moeglin, C. , Holomorphie des opérateurs d'entrelacement normalisés à l'aide des paramétres
d'Arthur.
Canad. J. Math.
62(2010), no. 6,1340–1386.http://dx.doi.org/10.4153/CJM-2010-074-6
Google Scholar
[Mœglla]
Moeglin, C., Conjecture d'Adams pour la correspondance de Howe et filtration de Kuala.
Arithmetic geometry and automorphic forms, Adv. Lect. Math. (ALM),
19, Int. Press, Somerville, MA, 2011, pp. 445–503.Google Scholar
[Mœgllb]
Moeglin, C., Image des opérateurs d'entrelacements normalisés et pôles des séries d'Eisenstein.
Adv. Math.
228(2011), no. 2, 1068–1134.http://dx.doi.Org/10.101 6/j.aim.2O11.06.003
Google Scholar
[Mœgllc]
Moeglin, C., Multiplicité 1 dans les paquets d'Arthur aux places p-adiques.
In: On certain
L-functions, Clay Math. Proc. 13, American Mathematical Society, Providence, RI,
2011, pp.
333–374.Google Scholar
[MT02]
Mœglin, C. and Tadic, M., Construction of discrete series for classical p-adic groups.
J. Amer. Math. Soc.
15(2002), no. 3, 715–786. http://dx.doi.Org/10.1090/S0894-0347-02-00389-2
Google Scholar
[MW89]
Mœglin, C. and Waldspurger, J.-L., Le spectre résiduel de GL(n).
Ann. Sci. École Norm. Sup. (4) 22(1989), no. 4, 605–674.Google Scholar
[MW06]
Mœglin, C., Sur le transfert des traces d'un groupe classique p-adique à un groupe linéaire tordu.
Selecta Math. (N.S.)
12(2006), no. 3-4, 433–515.http://dx.doi.org/10.1007/s00029-006-0026-0
Google Scholar
[NgôlO] Ngô, B. C., Le lemme fondamental pour les algébres de Lie.
Publ. Math. Inst. Hautes Études
Sci.
111(2010), 1–169.http://dx.doi.org/10.1007/s10240-010-0026-7
Google Scholar
[Schl3]
Scholze, P., The local Langlands correspondence for GLn over p-adic fields.
Invent. Math.
192(2013), 663–715.http://dx.doi.Org/10.1 OO7/sOO222-O12-0420-5
Google Scholar
[Tad86]
Tadić, M., Classification of unitary representations in irreducible representations of general
linear group (non-Archimedean case).
Ann. Sci. École Norm. Sup. (4) 19(1986), no. 3,
335–382.Google Scholar
[Wal95]
Waldspurger, J.-L., Une formule des traces locale pour les algébres de Lie p-adiques.
J. Reine Angew. Math.
465(1995), 41–99.http://dx.doi.Org/10.1515/crll.1 995.465.41
Google Scholar
[Wal97]
Waldspurger, J.-L., Le lemme fondamental implique le transfert.
Compositio Math.
105(1997), no. 2,153–236.http://dx.doi.Org/10.1023/A:10001 031122 68
Google Scholar
[WalO6]
Waldspurger, J.-L., Endoscopie et changement de caractéristique.
J. Inst. Math. Jussieu
5(2006), no. 3,
423–525.http://dx.doi.Org/1 0.101 7/S1474748006000041
Google Scholar
[WalO8]
Waldspurger, J.-L., L'endoscopie tordue n'est pas si tordue.
Mem. Amer. Math. Soc.
194(2008), no. 908.
http://dx.doi.Org/10.1090/memo/0908
Google Scholar
[Xul5]
Xu, B., On the cuspidal support of discrete series for p-adic quasisplit Sp( N) and SO(N).
arxiv:1 504.08364
Google Scholar
You have
Access
- 5
- Cited by