Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T19:23:41.976Z Has data issue: false hasContentIssue false

On Characterizing Injective Sheaves

Published online by Cambridge University Press:  20 November 2018

David E. Dobbs*
Affiliation:
University of Tennessee, Knoxville, Tennessee
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let T be a Grothendieck topology, Ab the category of abelian groups, and . the category of Ab-valued sheaves on T. It is known that is an abelian A B5 category with a set of generators [2, Theorem 1.6(i), p. 30] and, hence, has injective envelopes [10, Theorem 3.2, p. 89]. Consider an object F of .

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

1. Amitsur, S. A., Homology groups and double complexes for arbitrary fields, J. Math. Soc. Japan 14 (1962), 125.Google Scholar
2. Artin, M., Grothendieck topologies, (mimeographed notes), Harvard University, Cambridge, Mass., 1962.Google Scholar
3. Chase, S. U., Harrison, I. K. and Rosenberg, A., Galois theory and Galois cohomology of commutative rings, Memoirs Amer. Math. Soc. 52 (1965), 1533.Google Scholar
4. Chase, S. U. and Rosenberg, A., Amitsur cohomology and the Brauer group, Memoirs Amer. Math. Soc. 52 (1965), 3479.Google Scholar
5. Dobbs, D. E., Cech cohomological dimensions for commutative rings (Springer-Verlag, Berlin, 1970).Google Scholar
6. Dobbs, D. E. Amitsur cohomology in additive functors, Can. Math. Bull. 16 (1973), 417426.Google Scholar
7. Grothendieck, A., Sur quelques points d'algèbre homologique, Tohoku Math. J. 9 (1957), 119221.Google Scholar
8. Magid, A. R., Pierce's representation and separable algebras, 111. J. Math. 15 (1971), 114121.Google Scholar
9. Martinez, J. J., Cohomological dimension of discrete modules over profinite groups, Pacific J. Math. 49 (1973), 185189.Google Scholar
10. Mitchell, B., Theory of categories (Academic Press, New York, 1965).Google Scholar
11. Nakayama, T., Cohomology of class field theory and tensor product modules I, Ann. of Math. 65 (1957), 255267.Google Scholar
12. Rim, D. S., Modules over finite groups, Ann. of Math. 69 (1959), 700712.Google Scholar
13. Serre, J.-P., Corps locaux (Hermann, Paris, 1962).Google Scholar
14. Shatz, S. S., Profinite groups, arithmetic, and geometry (Princeton University Press, Princeton, 1972).Google Scholar
15. Swan, R. G., The theory of sheaves (University of Chicago Press, Chicago, 1964).Google Scholar
16. Waterhouse, W. C., Profinite groups are Galois groups, Proc. Amer. Math. Soc. 42 (1974), 639640.Google Scholar