Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T00:42:58.279Z Has data issue: false hasContentIssue false

On BP<1>*(K(Z, 3); Z/p)

Published online by Cambridge University Press:  20 November 2018

Jack Ucci*
Affiliation:
Syracuse University, Syracuse, New York
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study the inverse limit cohomology h*(K(Z, 3)) of an Eilenberg-MacLane object K(Z, 3) for certain cohomology theories h. Our main result gives a complete description of all non-trivial differentials of the Atiyah-Hirzebruch spectral sequence (AHSS) H*(X;h*(pt)) ⇒ h*(X) for X = K(Z, 3) and h either of the complex K-theories K*( ;Z/p) and K*( ;Z(p)). This is achieved inductively using the finite symmetric product spaces SPkS3, k = pr. Identification of cycles and boundaries of each non-trivial differential leads to an explicit description of BP<1>*(K(Z, 3); Z/p) and some information about BP<1>*(K(Z, 3)).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1983

References

1. Anderson, D. W., Universal coefficient theorems for K-theory (preprint).Google Scholar
2. Anderson, D. W. and Hodgkin, L., The K-theory of Eilenberg-MacLane complexes. Topology 7(1968), 317380.Google Scholar
3. Araki, S. and Toda, H., Multiplicative structures in mod q cohomology theories I, Osaka J. Math. 2 (1965), 71115.Google Scholar
4. Atiyah, M. F. and Hirzebruch, F., Analytic cycles on complex manifolds, Topology 7 (1961), 2445.Google Scholar
5. Cartan, H., Exposés 9, 10, 11 of Algehres d'Eilenberg-MacLane et homotopie, Séminaire Henri Cartan (1954/1955).Google Scholar
6. Dold, A. and Thorn, R., Quasifaserungen and unendliche symmetrische Produkte, Ann. of Math. 67 (1958), 239281.Google Scholar
7. Hodgkin, L., On the K-theory of Lie groups, Topology 6 (1967), 136.Google Scholar
8. Johnson, D. C. and Wilson, W. Stephen, Projective dimension and Brown-Peterson homology, Topology 12 (1973), 327353.Google Scholar
9. Kultze, R., Über multiplikative Eigenschaften von spektralen Sequenzen, Math. Annalen 158 (1965), 233268.Google Scholar
10. Nakaoka, M., Cohomology mod p of symmetric products of spheres 11, J. Inst. Polyteeh., Osaka City Univ. 10 (1959), 6789.Google Scholar
11. Serre, J.-P., Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comm. Math. Helv. 27 (1953), 198231.Google Scholar
12. Snaith, V. and Ucci, J. J., Three remarks on symmetric products and symmetric maps, Pac. J. Math. 45, 369377.Google Scholar