Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T22:48:10.922Z Has data issue: false hasContentIssue false

On Algebraic Surfaces Associated with Line Arrangements

Published online by Cambridge University Press:  07 January 2019

Zhenjian Wang*
Affiliation:
CNRS, LJAD, UMR 7351, Univ. Nice Sophia Antipolis, 06100 Nice, France Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a line arrangement ${\mathcal{A}}$ in the complex projective plane $\mathbb{P}^{2}$, we investigate the compactification $\overline{F}$ in $\mathbb{P}^{3}$ of the affine Milnor fiber $F$ and its minimal resolution $\tilde{F}$. We compute the Chern numbers of $\tilde{F}$ in terms of the combinatorics of the line arrangement ${\mathcal{A}}$. As applications of the computation of the Chern numbers, we show that the minimal resolution is never a quotient of a ball; in addition, we also prove that $\tilde{F}$ is of general type when the arrangement has only nodes or triple points as singularities. Finally, we compute all the Hodge numbers of some $\tilde{F}$ by using some knowledge about the Milnor fiber monodromy of the arrangement.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

References

Barth, W., Hulek, K., Peters, C., and Van de Ven, A., Compact complex surfaces. Second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin, 2004. https://doi.org/10.1007/978-3-642-57739-0.Google Scholar
Budur, N., Dimca, A., and Saito, M., First Milnor cohomology of hyperplane arrangements . In: Topology of algebraic varieties and singularities, Contemp. Math. 538, American Mathematical Society, Providence, RI, 2011, pp. 279292. https://doi.org/10.1090/conm/538/10606.Google Scholar
Catanese, F., Kodaira fibrations and beyond: methods for moduli theory . Jpn. J. Math. 12(2017), no. 2, 91174 https://doi.org/10.1007/s11537-017-1569-x.Google Scholar
Cohen, D. and Suciu, A., On Milnor fibrations of arrangements . J. London Math. Soc. 51(1995), no. 1, 105119. https://doi.org/10.1112/jlms/51.1.105.Google Scholar
Debarre, O., Higher dimensional algebraic geometry. Universitext, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4757-5406-3.Google Scholar
Dimca, A., Singularities and topology of hypersurfaces. Universitext, Springer-Verlag, New York, 1992. https://doi.org/10.1007/978-1-4612-4404-2.Google Scholar
Dimca, A., On the Milnor monodromy of the irreducible complex reflection arrangements. arxiv:1606.04048.Google Scholar
Dimca, A. and Papadima, S., Finite Galois covers, cohomology jump loci, formality properties, and multinets . Ann. Sc. Norm. Super. Pisa Cl. Sci. 10(2011), 253268.Google Scholar
Dimca, A. and Sticlaru, G., Computing the monodromy and pole order filtration on the Milnor fiber cohomology of plane curves. arxiv:1609.06818.Google Scholar
Eisenbud, D. and Harris, J., 3264 & all that: Intersection theory in algebraic geometry. upcoming book, online version. https://scholar.harvard.edu/files/joeharris/files/000-final-3264.pdf.Google Scholar
Hartshorne, R., Algebraic geometry Springer Graduate Texts in Mathematics, 52, Springer-Verlag, New York-Heidelberg, 1977.Google Scholar
Hirzebruch, F., Arrangements of lines and algebraic surfaces . In: Arithmetic and geometry, Vol II, Progr. Math., 36, Birkhäuser, Boston, MA, 1983, pp. 113140.Google Scholar
Mǎcinic, A. and Papadima, S., On the monodromy action on Milnor fibers of graphic arrangements . Topology Appl. 156(2009), no. 4, 761774. https://doi.org/10.1016/j.topol.2008.09.014.Google Scholar
Mumford, D., The topology of normal singularities of an algebraic surface and a criterion for simplicity . Inst. Hautes Études Sci. Publ. Math. 9(1961), 522.Google Scholar
Orlik, P. and Wagreich, P., Equivariant resolution of singularities with ℂ action . In: Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, MA, 1971), Part I, Lecture Notes in Math., 298, Springer-Verlag, Berlin, 1972, pp. 270290.Google Scholar
Papadima, S. and Suciu, A., The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy . Proc. Lond. Math. Soc. (3) 114(2017), no. 6, 6911004. https://doi.org/10.1112/plms.12027.Google Scholar
Reid, M., The Du Val singularities A n , D n , E 6, E 7, E 8. online notes. https://homepages.warwick.ac.uk/∼masda/surf/more/DuVal.pdf.Google Scholar
Sakai, F., Semi-stable curves on algebraic surfaces and logarithmic pluricanonical maps . Math. Ann. 254(1980), no. 2, 89120. https://doi.org/10.1007/BF01467073.Google Scholar
Suciu, A., Fundamental groups of line arrangements: Enumerative aspects . In: Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Contemp. Math., 276, American Mathematical Society, Providence, RI, 2001, pp. 4379. https://doi.org/10.1090/conm/276/04510.Google Scholar
Suciu, A., Hyperplane arrangements and Milnor fibrations . Ann. Fac. Sci. Toulouse Math. (6) 23(2014), no. 2, 417481. https://doi.org/10.5802/afst.1412.Google Scholar
Tretkoff, P., Complex ball quotients and line arrangements in the projective plane, Mathematica Notes, 51, Princeton University Press, Princeton, NJ, 2016. https://doi.org/10.1515/9781400881253.Google Scholar
Yau, S. T., Calabi’s Conjecture and some new results in algebraic geometry . Proc. Nat. Acad. Sci. USA, Volume 74, No. 5(1977), 17981799. https://doi.org/10.1073/pnas.74.5.1798.Google Scholar