Published online by Cambridge University Press: 20 November 2018
Let $k$ be a number field. We describe the category of Laumon 1-isomotives over $k$ as the universal category in the sense of M. Nori associated with a quiver representation built out of smooth proper $k$-curves with two disjoint effective divisors and a notion of $H_{\text{dR}}^{1}$ for such “curves with modulus”. This result extends and relies on a theorem of J. Ayoub and L. Barbieri-Viale that describes Deligne's category of 1-isomotives in terms of Nori's Abelian category of motives.