Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-02T22:26:05.011Z Has data issue: false hasContentIssue false

Multivalent and Meromorphic Functions of Bounded Boundary Rotation

Published online by Cambridge University Press:  20 November 2018

Ronald J. Leach*
Affiliation:
Howard University, Washington, D.C.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The classVk(p). We generalize the class Vk of analytic functions of bounded boundary rotation [8] by allowing critical points in the unit disc U.

Definition. Let f(z) = aqzq + . . . (q 1) be analytic in U. Then f(z) belongs to the class Vk(p) if for r sufficiently close to 1,

and

We note that (1.1) implies that / has precisely p — 1 critical points in U.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1975

References

1. Brannan, D. A., On functions of bounded boundary rotation. I, Proc. Edinburgh Math. Soc. 16 (1969), 339347.Google Scholar
2. Brannan, D. A. and Kirwan, W. E., On some classes of bounded analytic functions, J. London Math. Soc. 2 (1969), 431443.Google Scholar
3. Goluzin, G. M., Geometric theory of functions of a complex variable (Amer. Math. Soc, Providence, R.I., 1969).Google Scholar
4. G∞dman, A. W., On the Schwarz-Christoffel transformation and p-valent functions, Trans. Amer. Math. Soc. 68 (1950), 204223.Google Scholar
5. Hayman, W. K., Multivalent functions (Cambridge University Press, Cambridge, 1958).Google Scholar
6. Hummel, J. A., Extremal properties of weakly starlike p-valent starlike functions, Trans. Amer. Math. Soc. 180 (1968), 544551.Google Scholar
7. Leach, R. J., Odd functions of bounded boundary rotation, Can. J. Math. 26 (1974), 551564.Google Scholar
8. Lehto, O., On the distortion of conformai mappings with bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A, 1, 124 (1952), 14 pp.Google Scholar
9. Livingston, A. E., p-valent close-to-convex functions, Trans. Amer. Math. Soc. 115 (1965), 161179.Google Scholar
10. Livingston, A. E., Meromorphic multivalent close-to-convex functions, Trans. Amer. Math. Soc. 119 (1965), 167177.Google Scholar
11. Livingston, A. E., The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc. 21 (1969), 545552.Google Scholar
12. N∞nan, J., Asymptotic behavior of functions with bounded boundary rotation, Trans. Amer. Math. Soc. 164 (1972), 397410.Google Scholar
13. Pfaltzgralï, J. A. and Pinchuk, B., Constrained extremal problems for classes of meromorphic functions, Bull. Amer. Math. Soc. 75 (1969), 379383.Google Scholar
14. Pommerenke, C., On convex and starlike functions, J. London Math. Soc. 37 (1962), 209224.Google Scholar
15. Schiffer, M. and Tammi, O., On the fourth coefficient of univalent functions with bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A, 1, 396 (1967), 26 pp.Google Scholar
16. Umezawa, T., Analytic functions convex in one direction, J. Math. Soc. Japan 4 (1952), 194202.Google Scholar
17. Umezawa, T., On the theory of univalent functions, Tohoku Math. J. 7 (1955), 212223.Google Scholar