Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T10:32:49.006Z Has data issue: false hasContentIssue false

Multipliers on Spaces of Analytic Functions

Published online by Cambridge University Press:  20 November 2018

Oscar Blasco*
Affiliation:
Departamento de Análisis Matemático Universidad de Valencia 46100 Burjassot (Valencia) Spain email: e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the paper we find, for certain values of the parameters, the spaces of multipliers (H(p, q, α), H(s, t, β) and (H(p, q, α), ls), where H(p, q, α) denotes the space of analytic functions on the unit disc such that . As corollaries we recover some new results about multipliers on Bergman spaces and Hardy spaces.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1995

References

[ACP] Anderson, J.M., Clunie, J. and Pommerenke, Ch., On Block functions and normal functions, J. Reine Angew. Math. 270(1974), 1237.Google Scholar
[AS] Anderson, J.M. and Shields, A.L., Coefficient multipliers on Block functions, Trans. Amer. Math. Soc. 224(1976), 256265.Google Scholar
[A] Axler, S., Bergman spaces and their operators, Surveys on some recent results on Operator Theory ‘eds. Conway, J.B. and Morrel, B.B.), Pitman Res. Notes Math. 171, 1988, 150.Google Scholar
[BST] Bennett, G., Stegenga, D.A. and Timoney, R.M., Coefficients of Block and Lipschitz functions, Illinois J. Math. 25(1981), 520531.Google Scholar
[Bl] Blasco, O., Operators on weighted Bergman spaces and applications, Duke Math. J. 66(1992), 443–167.Google Scholar
[B2] Blasco, O., Multipliers on weighted Besov spaces of analytic functions, Contemp. Math. 144(1993), 2333.Google Scholar
[D] Duren, P., Theory ofHp-spaces, Academic Press, New York, 1970.Google Scholar
[DS1] Duren, P. and Shields, A.L., Coefficient multipliers of W and B? spaces, Pacific J. Math. 32(1970), 6978.Google Scholar
[DS2] Duren, P., Properties of Hp (0 < p < , 1) and its containing Banach space, Trans. Amer. Math. Soc. 141(1969), 255262.Google Scholar
[DRS] Duren, P.L., Romberg, B.W. and Shields, A.L., Linear funetionals on Hp-spaces with 0 < p <, 1, J. Reine Angew. Math. 238(1969), 3260.Google Scholar
[Fl] Flett, T.M., The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38(1972), 746765.Google Scholar
[F2] Flett, T.M., Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. Appl. 39(1972), 125158.Google Scholar
[F3] Flett, T.M., On the rate of growth of mean valeus of holomorphic and harmonic functions, Proc. London Math. Soc. 20(1970), 749768.Google Scholar
[HL1] Hardy, G. H. and Littlewood, J. E., Some properties of fractional integrals II, Math. Z. 34(1932), 403-439.Google Scholar
[HL2] Hardy, G. H., Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. 12(1941), 221-256.Google Scholar
[JP] Jevtic, M. and Pavlovic, M., On multipliers from HP to Iq, 0 < q < p < 1, Arch. Math. 56(1991), 174-180.Google Scholar
[Ka] Katnetzon, Y., An introduction to Harmonic Analysis, John Wiley and Sons, New York, 1968.Google Scholar
[K] Kellogg, C. N., An extension of the Hausdorff-Young Theorem, Michigan Math. J. 18(1971), 121-127.Google Scholar
[Ki] Kisliakov, S. V., Fourier coefficients of boundary values of analytic functions on the disc and the bidisc, Trudy Mat. Inst. Steklov. 155(1981), 77-91.Google Scholar
[LP] Littlewood, J. E. and Paley, R. E. A. C., Theorems on Fourier series and power series, J. London Math. Soc. 42(1931), 52-89.Google Scholar
[MZ] MacGregor, T. and Zhu, K., Coefficient multipliers between Bergman and Hardy spaces, preprint.Google Scholar
[Ma] Marzuq, M., Linear Junctionals on some weighted Bergman spaces, Bull. Austral. Math. Soc. 42(1990), 417-425.Google Scholar
[MPI] Mateljevic, M. and Pavlovic, M., LP behaviour of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc. 87(1983), 309-316.Google Scholar
[MP2] Mateljevic, M., LP behaviour of the integral means of analytic functions, Studia Math. 77(1984), 219-237.Google Scholar
[MP3] Mateljevic, M. , Multipliers of HP and BMO, Pacific J. Math. 146(1990), 71-84.Google Scholar
[M] Matheson, A., A Multipliers theorem for analytic functions of slow mean growth, Proc. Amer. Math. Soc. 77(1979), 53-57.Google Scholar
[SI] Sledd, W., Some results about spaces of analytic functions introduced by Hardy and Littlewood, J. London Math. Soc. 2(1974), 328-336.Google Scholar
[S2] Sledd, W., On multipliers of HP spaces, Indiana Univ. Math. J. 27(1978), 797-803.Google Scholar
[Sh] Shapiro, J. H., Mackey topologies, reproducing kernels and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43(1976), 187-202.Google Scholar
[SW] Shields, A. L. and D. L. Williams, Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162(1971), 287-302.Google Scholar
[St] Stegenga, D., Multipliers of the Dirichlet space, Illinois J. Math. 24(1980), 113-139.Google Scholar
[V] Vukotic, D., On the coefficient multipliers of Bergman spaces, preprint.Google Scholar
[W] Wojtaszcyk, P., Multipliers into Bergman spaces and Nevalinna class, Canad. Math. Bull. 33(1990), 151-161.Google Scholar
[Z] Zhu, K., Operator theory in function spaces, Marcel Dekker, Inc., New York, 1990.Google Scholar
[Zy] Zygmund, A., Trigonometric series, Cambrigde Univ. Press., New York, 1959.Google Scholar