No CrossRef data available.
Article contents
Holomorphic Generation of Continuous Inverse Algebras
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We study complex commutative Banach algebras (and, more generally, continuous inverse algebras) in which the holomorphic functions of a fixed $n$-tuple of elements are dense. In particular, we characterize the compact subsets of ${{\mathbb{C}}^{n}}$ which appear as joint spectra of such $n$ -tuples. The characterization is compared with several established notions of holomorphic convexity by means of approximation conditions.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2007
References
[1]
Arens, R. and Calderón, A. P., Analytic functions of several Banach algebra elements. Ann. of Math. (2)
62(1955), 204–216.Google Scholar
[2]
Behnke, H. and Stein, K., Konvergente Folgen von Regularitätsbereichen und die Meromorphiekonvexität, Math. Ann.
116(1938), 204–216.Google Scholar
[3]
Biller, Harald, Algebras of complex analytic germs. Preprint 2331, http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/shadow/pp2331.html.
Google Scholar
[4]
Biller, Harald, Analyticity and naturality of the multi-variable functional calculus. To appear in Expositiones Mathematicae. http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/shadow/pp2332.html.
Google Scholar
[5]
Biller, Harald, Continuous inverse algebras and infinite-dimensional linear Lie groups, Habilitationsschrift, Technische Universität Darmstadt, 2004, http://www.mathematik.tu-darmstadt.de/∼biller.
Google Scholar
[6]
Biller, Harald, Continuous inverse algebras with involution, Preprint 2346, http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/shadow/pp2346.html.
Google Scholar
[7]
Björk, J.-E., Holomorphic convexity and analytic structures in Banach algebras. Ark. Mat.
9(1971), 39–54.Google Scholar
[8]
Blackadar, B., K-Theory for Operator Algebras. Second edition. Mathematical Sciences Research Institute Publications
5, Cambridge University Press, Cambridge, 1998.Google Scholar
[9]
Bonsall, F. F. and Duncan, J., Complete Normed Algebras.
Ergebnisse der Mathematik und ihrer Grenzgebiete
80, Springer-Verlag, New York, 1973.Google Scholar
[10]
Bost, J.-B., Principe d’Oka, K-théorie et systèmes dynamiques non commutatifs. Invent. Math.
101(1990), no. 2, 261–333.Google Scholar
[11]
Bourbaki, N., Éléments de mathématique. Fasc. XXXII. Théories spectrales. Chapitre I: Algèbres normées. Chapitre II: Groupes localement compacts commutatifs, Actualités Scientifiques et Industrielles, No. 1332, Hermann, Paris, 1967.Google Scholar
[12]
Connes, A., Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math.
62(1985), 257–360.Google Scholar
[13]
Dierolf, S. and Wengenroth, J., Inductive limits of topological algebras. Linear Topol. Spaces Complex Anal.
3(1997), 45–49,Google Scholar
[14]
Docquier, F. and Grauert, H., Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten. Math. Ann.
140(1960), 94–123.Google Scholar
[16]
Engelking, R., General topology. Second edition, Sigma Series in Pure Mathematics
6, Heldermann Verlag, Berlin, 1989.Google Scholar
[17]
Floret, K., Lokalkonvexe Sequenzen mit kompakten Abbildungen. J. Reine Angew.Math.
247(1971), 155–195.Google Scholar
[18]
Forstnerič, F., A smooth holomorphically convex disc in C2
that is not locally polynomially convex.
Proc. Amer. Math. Soc.
116(1992), no. 2, 411–415.Google Scholar
[20]
Glöckner, H., Algebras whose groups of units are Lie groups. Studia Math.
153(2002), no. 2, 147–177.Google Scholar
[21]
Gramsch, B., Relative Inversion in der Störungstheorie von Operatoren und.
-Algebren.
, Math. Ann.
269(1984), no. 1, 27–71.Google Scholar
[22]
Grauert, H. and Remmert, R., Theorie der Steinschen Räume.
Grundlehren der Mathematischen Wissenschaften
227, Springer-Verlag, Berlin, 1977.Google Scholar
[23]
Gunning, R. C. and Rossi, H., Analytic Functions of Several Complex Variables.
Prentice-Hall, Englewood Cliffs, NJ, 1965.Google Scholar
[24]
Harvey, R. and Wells, R. O. Jr., Compact holomorphically convex subsets of a Stein manifold. Trans. Amer. Math. Soc.
136(1969), 509–516.Google Scholar
[25]
Hewitt, E. and Stromberg, K., Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable.
Graduate Texts in Mathematics
25, Springer-Verlag, New York, 1975.Google Scholar
[26]
Hörmander, L., An Introduction to Complex Analysis in Several Variables. Second revised edition. North-Holland Publishing, Amsterdam, 1973.Google Scholar
[27]
Hörmander, L. and Wermer, J., Uniform approximation on compact sets in Cn. Math. Scand.
23(1968), 5–21 (1968).Google Scholar
[28]
Kriegl, A. and Michor, P. W., The Convenient Setting of Global Analysis.
Mathematical Surveys and Monographs
53, American Mathematical Society, Providence, RI, 1997.Google Scholar
[29]
Maier, P., Central extensions of topological current algebras.
In: Geometry and Analysis on Finiteand Infinite-Dimensional Lie Groups, Banach Center Publ.
55, Polish Acad. Sci., Warsaw, 2002, pp. 61–76.Google Scholar
[30]
Maier, P. and Neeb, K.-H., Central extensions of current groups. Math. Ann.
326(2003), no. 2, 367–415.Google Scholar
[31]
Michael, E. A., Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc., 1952(1952), no. 11.Google Scholar
[32]
Neeb, K.-H., Current groups for non-compact manifolds and their central extensions.
In: Infinite Dimensional Groups and Manifolds, IRMA Lect. Math. Theor. Phys.
5, de Gruyter, Berlin, 2004, pp. 109–183.Google Scholar
[33]
Neeb, K.-H., Locally convex root graded Lie algebras.
Travaux mathématiques
14, (Univ. du Luxembourg), 2003 pp. 25–120.Google Scholar
[34]
Neeb, K.-H. and Wagemann, F., The universal central extension of the holomorphic current algebra. Manuscripta Math.
112(2003), no. 4, 441–458.Google Scholar
[35]
Phillips, N. C., K-theory for Fréchet algebras. Internat. J. Math.
2(1991), no. 1, 77–129.Google Scholar
[36]
Range, R. M., Holomorphic functions and integral representations in several complex variables.
Graduate Texts in Mathematics
108, Springer-Verlag, New York, 1986.Google Scholar
[37]
Rossi, Hugo, Holomorphically convex sets in several complex variables. Ann. of Math. (2)
74(1961), 470–493.Google Scholar
[40]
Rudin, Walter, Real and Complex Analysis. Third edition. McGraw-Hill, New York, 1987.Google Scholar
[41]
Šilov, G. E., On the decomposition of a commutative normed ring into a direct sum of ideals. Amer. Math. Soc. Transl. (2)
1(1955), 37–48.Google Scholar
[42]
Siu, Y. T., Every Stein subvariety admits a Stein neighborhood.
Invent. Math.
38(1976/77), no. 1, 89–100.Google Scholar
[43]
Taylor, Joseph L., Several Complex Variables with Connections to Algebraic Geometry and LIe Groups.
Graduate Studies in Mathematics
46, American Mathematical Society, Providence, RI, 2002.Google Scholar
[44]
Waelbroeck, Lucien, Le calcul symbolique dans les algèbres commutatives. J. Math. Pures Appl. (9)
33(1954), 147–186.Google Scholar
[45]
Waelbroeck, Lucien, Les algèbres à inverse continu. C. R. Acad. Sci. Paris
238(1954), 640–641.Google Scholar
[46]
Waelbroeck, Lucien, The holomorphic functional calculus and non-Banach algebras.
In: Algebras in Analysis, Academic Press, London, 1975, pp. 187–251.Google Scholar
[47]
Waelbroeck, Lucien, The holomorphic functional calculus as an operational calculus.
In: Spectral Theory, Banach Center Publ.
8, PWN, Warsaw, 1982, pp. 513–552.Google Scholar
[48]
Wells, R. O. Jr., Holomorphic hulls and holomorphic convexity of differentiable submanifolds. Trans. Amer. Math. Soc.
132(1968), 245–262.Google Scholar
[49]
Zame, William R., Holomorphic convexity of compact sets in analytic spaces and the structure of algebras of holomorphic germs. Trans. Amer. Math. Soc.
222(1976), 107–127.Google Scholar
[50]
Zame, William R., Existence, uniqueness and continuity of functional calculus homomorphisms. Proc. London Math. Soc. (3)
39(1979), no. 1, 73–92.Google Scholar
You have
Access