Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T22:50:57.480Z Has data issue: false hasContentIssue false

Hecke $L$-Functions and the Distribution of Totally Positive Integers

Published online by Cambridge University Press:  20 November 2018

Avner Ash
Affiliation:
Department of Mathematics, Boston College, Chestnut Hill, MA 02467-3806, U.S.A. email: [email protected], [email protected]
Solomon Friedberg
Affiliation:
Department of Mathematics, Boston College, Chestnut Hill, MA 02467-3806, U.S.A. email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $K$ be a totally real number field of degree $n$. We show that the number of totally positive integers (or more generally the number of totally positive elements of a given fractional ideal) of given trace is evenly distributed around its expected value, which is obtained from geometric considerations. This result depends on unfolding an integral over a compact torus.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2007

References

[1] Chinta, G. and Goldfeld, D., Grössencharakter L-functions of real quadratic fields twisted by modular symbols. Invent. Math. 144(2001), no. 3, 435449.Google Scholar
[2] Duke, W. and Imamoḡlu, I., Lattice points in cones and Dirichlet series. Int. Math. Res. Not. (2004), no. 53, 28232836.Google Scholar
[3] Hecke, E., Über analytische Funktionen und die Verteilung von Zahlen mod.eins. Abh. Math. Seminar Hamburg 1(1921), pp. 54–76. Reprinted in: MathematischeWerke. Vandenhoeck & Ruprecht, Göttingen, 1983, pp. 313335.Google Scholar
[4] Landau, E., Handbuch der Lehre von der Verteilung der Primzahlen. Second edition. Chelsea Publishing, New York, 1953.Google Scholar
[5] Lang, S., Algebraic Number Theory. Addison-Wesley, Reading, MA, 1970.Google Scholar
[6] Piatetski-Shapiro, I. and Rallis, S., L-functions of automorphic forms on simple classical groups. In: Modular Forms, Ellis Horwood, Horwood, Chichester, 1984, pp. 251261.Google Scholar
[7] Schnee, W., Über den Zusammenghang zwischen den Summabilitätseigenschaften Dirichletscher Reihen und irhem Funkionentheoretischen Charakter. Acta Math. 35(1912), 357398.Google Scholar
[8] Siegel, C. L., Advanced Analytic Number Theory. Tata Institute of Fundamental Research Studies in Mathematics 9, Tata Institute of Fundamental Research, Bombay, 1980.Google Scholar