No CrossRef data available.
Article contents
A Generalization of the Pappus Configuration
Published online by Cambridge University Press: 20 November 2018
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
A configuration is a system of m points and n lines such that each point lies on μ of the lines and each line contains v of the points. It is usually denoted by the symbol (mμ,nμ) with mμ = nv. Two configurations corresponding to the same symbol are said to be equivalent if there exist 1-1 mappings of the points and lines of one onto the points and lines of the other which preserve the incidence relations.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1951
References
[1]
Coxeter, H. S. M., Self-dual configurations and regular graphs, Bull. Amer. Math. Soc,vol. 56 (1950), 413–455.Google Scholar
[2]
Feld, J. M., Configurations inscriptible in a plane cubic curve, Amer. Math. Monthly, vol. 43 (1936), 549–555.Google Scholar
[3]
Hesse, O., Über Curven dritter Ordnung und die Kegelschnitte welche diese Curven in drei verschiedenen Punkten beruhren, J. Reine Angew. Math., vol. 36 (1848), 143–176.Google Scholar
[5]
Zacharias, M., Untersuchungen uber ebene Konfigurationen (124, 163), Deutsche Math,vol. 6 (1941), 147–170.Google Scholar
[6]
Zacharias, M., Eine ebene Konfiguration (124, 163) in der Dreiecksgeometrie, Monatsh. Math.
Phys., vol. 44 (1936), 153–158.Google Scholar
[7]
Zacharias, M., Über den Zusammenhang des Morleyschen Satzes von den winkeldrittelnden Eckenlinienen eines Dreiecks mit den trilinearen Verwandtschaften in Dreieck und mit einer Konfiguration (124, 163) der Dreiecksgeometrie, Deutsche Math., vol. 3 (1938),
36–45.Google Scholar
You have
Access