Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T17:34:22.824Z Has data issue: false hasContentIssue false

Free Planes and Collineations

Published online by Cambridge University Press:  20 November 2018

W. O. Alltop*
Affiliation:
Michels on Laboratories, China Lake, California
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our aim in this paper is to consolidate and extend some of the notions in (1; 2; 5; 6) concerning free planes in order to facilitate the study of their collineation groups. An upper bound mn for the orders of the finite subroups of Gn will be established, where Gn is the collineation group of the free plane ƒn of rank n + 4. In the process, a result of (6) will be generalized. Indeed, mn will be shown to be the best upper bound for all n ≠ 5.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1968

Footnotes

This paper contains part of the results from the author's doctoral dissertation prepared under the direction of Professor J. D. Swift at the University of California at Los Angeles.

References

1. Dembowski, Peter, Frète und offerte projektive Ebenen, Math. Z. 72 (1959/60), 410438.Google Scholar
2. Hall, M., Projective planes, Trans. Amer. Math. Soc. 54 (1943), 229277.Google Scholar
3. Hammer, P. C., Kuratowskïs closure theorem, Nieuw Arch. Wisk. (3) 8 (1960), 7480.Google Scholar
4. Iden, O., Free planes. I, Math. Z. 99 (1967), 117122.Google Scholar
5. Kopeikina, L. I., Freie Zerlegungen projektiver Ebenen, Izv. Akad. Nauk SSSRSer. Mat. 9 1945), 495526. (German translation from Russian privately circulated)Google Scholar
6. Lippi, Marco, Sugli elementi uniti nette collineazioni del piani Überi e del piani aperti. I ; II, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 40 (1966), 233-237; 379384.Google Scholar
7. Pickert, G., Projektive Ebenen (Springer-Verlag, Berlin, 1955).10.1007/978-3-662-00110-3CrossRefGoogle Scholar
8. Sandler, Reuben, The collineation groups of free planes. Trans. Amer. Math. Soc. 107 (1963),Google Scholar