Published online by Cambridge University Press: 20 November 2018
Given a strongly continuous semigroup of isometries ∪ acting on a Hilbert space ℋ, we construct an E0-semigroup α∪, the free E0-semigroup over ∪, acting on the algebra of all bounded linear operators on full Fock space over ℋ. We show how the semigroup αU⊗V can be regarded as the free product of α∪ and αV. In the case where U is pure of multiplicity n, the semigroup au, called the Free flow of rank n, is shown to be completely spatial with Arveson index +∞. We conclude that each of the free flows is cocycle conjugate to the CAR/CCR flow of rank +∞.