Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T21:16:18.514Z Has data issue: false hasContentIssue false

Criteria for Very Ampleness of Rank Two Vector Bundles over Ruled Surfaces

Published online by Cambridge University Press:  20 November 2018

Alberto Alzati*
Affiliation:
Dipartimento di Matematica, Univ. di Milano, 20133 Milano, Italy
Gian Mario Besana*
Affiliation:
College of Computing and Digital Media, De Paul University, Chicago, IL, 60604, U.S.A
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Very ampleness criteria for rank 2 vector bundles over smooth, ruled surfaces over rational and elliptic curves are given. The criteria are then used to settle open existence questions for some special threefolds of low degree.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

Footnotes

This work is within the framework of the national research project “Geomety of Algebraic Varieties” Cofin 2006 of MIUR.

References

[A-B-B] Alzati, A., Bertolini, M., and Besana, G. M., Numerical criteria for very ampleness of divisors on projective bundles over an elliptic curve. Canad. J. Math. 48(1996), no. 6, 1121–1137.Google Scholar
[B] Brosius, J. E., Rank-2 vector bundles on a ruled surface. I. Math. Ann. 265(1983), no. 2, 155–168. doi:10.1007/BF01460796Google Scholar
[B-B-1] Besana, G. M. and Biancofiore, A., Degree eleven manifolds of dimension greater than or equal to three. Forum Math. 17(2005), no. 5, 711–733. doi:10.1515/form.2005.17.5.711Google Scholar
[B-B-2] Besana, G. M. and Biancofiore, A., Numerical constraints for embedded projective manifolds. Forum Math. 17(2005), no. 4, 613–636. doi:10.1515/form.2005.17.4.613Google Scholar
[B-F] Besana, G. M. and Fania, M. L., The dimension of the Hilbert scheme of special threefolds. Comm. Algebra 33(2005), no. 10, 3811–3829. doi:10.1080/00927870500242926Google Scholar
[B-S] Beltrametti, M. C. and Sommese, A. J., The adjunction theory of complex projective varieties. de Gruyter Expositions in Mathematics, 16, Walter de Gruyter & Co., Berlin 1995.Google Scholar
[B-D-S] Beltrametti, M. C., Di Rocco, S., and Sommese, A. J., On generation of jets for vector bundles. Rev. Mat. Complut. 12(1999), no. 1, 27–45.Google Scholar
[Bu] Butler, D. C., Normal generation of vector bundles over a curve. J. Differential Geom. 39(1994), no. 1, 1–34.Google Scholar
[C-M] Ciliberto, C. and Miranda, R., Degeneration of planar linear systems. J. Reine Angew. Math. 501(1998), 191–220.Google Scholar
[F-L-1] Fania, M. L. and Livorni, E. L., Degree nine manifolds of dimension greater than or equal to 3. Math. Nachr. 169(1994), 117–134. doi:10.1002/mana.19941690111Google Scholar
[F-L-2] Fania, M. L. and Livorni, E. L., Degree ten manifolds of dimension n greater than or equal to 3. Math. Nachr. 188(1997), 79–108. doi:10.1002/mana.19971880107Google Scholar
[G-H] Griffiths, P. and Harris, J., Principles of algebraic geometry. Reprint of the 1978 original, John Wiley & Sons, New York, 1994.Google Scholar
[H] Hartshorne, R., Algebraic geometry. Graduate Texts in Mathematics, 52, Springer-Verlag, New York-Heidelberg, 1977.Google Scholar
[H-R] Holme, A. and Roberts, J., On the embeddings of projective varieties. In: Algebraic geometry (Sundance, UT, 1986), Lecture Notes in Math., 1311, Springer, Berlin, 1988, pp. 118–146.Google Scholar
[D-L] Lazarsfeld, R. and del Busto, G. F., Lectures on linear series. In: Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Math. Ser., 3, American Mathematical Society, Providence, RI, 1997, pp. 161–219.Google Scholar
[M] Miyaoka, Y., The Chern classes and Kodaira dimension of a minimal variety. In: Algebraic Geometry, Sendai 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, pp. 449–476.Google Scholar
[O] Ottaviani, G., On 3-folds in P5 which are scrolls. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19(1992), no. 3, 451–471.Google Scholar