Article contents
Compact Perturbations of Reflexive Algebras
Published online by Cambridge University Press: 20 November 2018
Extract
In this paper we study lattice properties of operator algebras which are invariant under compact perturbations. It is easy to see that if and are two operator algebras with contained in , then the reverse inclusion holds for their lattices of invariant subspaces. We will show that in certain cases, the assumption thats is contained in , where is the ideal of compact operators, implies that the lattice of is “approximately” contained in the lattice of . In particular, supposed and are reflexive and have commutative subspace lattices containing “enough” finite dimensional elements. We show (Corollary 2.8) that if is unitarily equivalent to a subalgebra of , then there is a unitary operator which carries all “sufficiently large” subspaces in lat into lat .
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1981
References
- 1
- Cited by