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COMPACT PERTURBATIONS OF REFLEXIVE 
ALGEBRAS 

KENNETH R. DAVIDSON 

1. Introduction. In this paper we study lattice properties of operator 
algebras which are invariant under compact perturbations. It is easy to 
see that if s/ and 38 are two operator algebras with s/ contained in <â?, 
then the reverse inclusion holds for their lattices of invariant subspaces. 
We will show that in certain cases, the assumption thats/ is contained 
in 38 + J ^ ( J f ) , where J ^ ( J ^ ) is the ideal of compact operators, implies 
that the lattice of 38 is ''approximately'' contained in the lattice of s/. In 
particular, s u p p o s e d and 38 are reflexive and have commutative sub-
space lattices containing ''enough" finite dimensional elements. We show 
(Corollary 2.8) that if s/ is unitarily equivalent to a subalgebra of 
38 +J^{^f), then there is a unitary operator which carries all "suffi­
ciently large" subspaces in lat 38 into lat se. 

Reflexive algebras with commutative subspace lattices were studied in 
[1]. Since then, there has been much interest in this family of non self-
adjoint algebras. Related questions have been studied in [8] in the con­
text of quasitriangular algebras. It is shown there that if two quasi-
triangular algebras are similar, then the corresponding lattices are 
unitarily equivalent for "sufficiently large" lattice elements. We show 
(Corollary 2.10) that if a reflexive algebra se is similar to a subalgebra 
of a quasitriangular algebra 2l$~ and has a commutative lattice, then 
lat stf contains a chain unitarily equivalent to an implementing lattice 
of Qy~'. We also show that if S$ is a reflexive algebra with commutative 
lattice such that se + Jf (3f) contains a quasitriangular algebra, then 
S$ + J T ( J ^ ) is quasitriangular itself (Theorem 5.3). 

When a lattice *Jt is not commutative, the problems are much more 
complicated, and our results are not as definitive. We show (Theorem 
4.2) that if a l g ~ # + J ^ ( ^ ) contains algJ?? for some commutative 
lattice «if, then "sufficiently large" projections in <Jt are lattice isomorphic 
to a sublattice of ££ and are asymptotically close to S£ in norm. How­
ever, we cannot determine whether these lattices are similar. In Section 
5, we examine whether s\g *J? + <#(<#?) need be quasitriangular if it 
contains a quasitriangular algebra. We introduce a large class of lattices 
for which the theorem is true. This result is of interest because the answer 
given is surprising and it shows that the general question is subtle. 
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If sé is any algebra of operators on a Hilbert space J^ , XdXsé will 
denote its lattice of invariant subspaces. Such lattices are always strongly 
closed, and we shall reserve the term lattice for strongly closed subspace 
lattices. If i f is a lattice, then alg i f is the algebra of all operators 
leaving the subspaces of S£ invariant. The lattice operations of span and 
intersection will be denoted by V and A respectively. We shall often 
identify J?? with the set of self adjoint projections onto the elements of I£, 
and in this setting 

algi^7 = [A\PLAP = 0 for all P i n i f } , 

where PL = I - P. We also set Q a l g ^ = alg i f + j f ( j T ) . All 
Hilbert spaces in this paper are separable. 

If SP — {Pn} is an increasing sequence of finite rank projections which 
span X t h e n ^ ( ^ ) = alg & and &,T(SP) = Qa\gé? are the trian­
gular and quasitriangular algebras associated with SP. In [5], Halmos 
defines an operator to be quasitriangular with respect to SP if 

l i n w \\Pn
LTPn\\ = 0. 

In [1], Arveson shows that this is equivalent to being in 21&~{£P). It is 
clear from this characterization that if <5? = {Rn} is another such sequence 
satisfying 

l i m ^ \\Pn - Rn\\ = 0, 

then Q.T{@) = &3T{ëP). It also follows that QST^SP) is closed. It is 
not known whether Q algJP is closed in general, but it is closed if ££ is 
generated by its finite rank elements. The algebra se + J ^ ( J ^ ) may fail 
to be closed for general operator algebras [3]. 

An operator algebra se is said to be reflexive if it is equal to alg latJ^/. 
We will restrict our attention to these algebras because there can be no 
good results for algebras which are too small. For example, if U is the 
bilateral shift with respect to a basis \en) and V = UP where P is the 
projection orthogonal to {e0}, then F is a compact perturbation of U. 
Also if °U and i ^ are the norm closed algebras generated by U and Vf it is 
easy to check that °U + j f (JT) = V + j f (JT). However, V is uni-
tarily equivalent to 5* © 5 where 5 is the unilateral shift. The invariant 
subspaces of these two operators are well known, and it is clear that they 
are quite dissimilar. However, the weakly closed algebras generated by 
U and V are reflexive and are no longer compact perturbations of one 
another. 

2. Almost finite lattices. 

Definition 2.1. We will say that a lattice J^ is AF if every element of 
££ is the union of finite rank projections in .if. 
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We note that a commutative lattice is AF if and only if the finite 
dimensional subspaces of J£ span ffl. In this case, the minimal projections 
in the abelian von Neumann algebra ££" are finite rank and span tâ\ 
There is a natural partial order on these minimal projections induced by 
££. Namely, Mx <<? M2 if and only if M2 ^ L implies Mi ^ L for L in 
«if, or equivalently, if and only if 

A f i ^ ( ^ ) M 2 Ç a l g i f . 

We will write Mi < M2 if ^ is unambiguous. 

LEMMA 2.2 LetS£ be a commutative AF lattice and suppose that Q a l g i f 
is contained in a quasitriangular algebra S137~(SP). Then 

H m ^ d(Pn,&) = 0. 

Proof. Suppose that for some e > 0 and a subset i2 = {Qn} of SP, we 
have d(Q, i f ) > e for all Q in SI. Note that 

algi^ C SLT(&) C £T(&). 

Set 5 = e/10 and L0 = 0, and let «if i be any chain in i f of finite rank 
projections with the identity operator as its supremum. Inductively we 
will choose increasing sequences Qn in i2 and Ln in i f i such that 

(1) HOr^-ill < Ô and ||<2WL/|| < h. 

The ÇÎ in j2 tend to / in the strong operator topology, so 5 — lim QiL — 0. 
If we have Ln_i, then since it is compact, 

Hm^co \\QiLK-i\\ = 0. 

So we can choose Qn > Çn_i satisfying (1). Similarly, if we have Qn} we 
can choose Ln satisfying (1). 

We will construct partial isometries Tn on (Ln — Ln-\)rff which belong 
to a l g i f and satisfy \\Qn

±TnQn\\ ^ 35. Assuming this has been done, let 
T — © ^ T r Then T is a partial isometry in a lg i f . Also 

T = Ln-iT + (Ln - Ln^)T + Ln+-T = Ln^T + Tn + TLn\ 

Hence 

WQn-LTQnW è | | e / ^ Q n | | " l l & ^ n - l l l " l l A ^ Q j > ^ 

It follows that T is not in i2j^~(i2), contradicting the hypothesis that 
Ç a l g ^ Ç SIT (SI). 

Now fix w, and l e t ^ = {Mi} be the set of minimal projections in the 
discrete abelian von Neumann algebra ££" such that Mi S Ln — Ln_i. 
Let s/ be the set of Mt in ~£ for which HÇ/i^H ^ V3Î, and let ̂  be the 
set for which \\QnMi\\ ^ V3ô. If there is a pair Afi in j / and M2 in ^ 
with ilfi <se M2, we can find a partial isometry Tw in M\3i (ffl)M2, and 
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a fortiori in a lgi f , such that 

I IG^Qnll = WQ^M^M.QnW = ||en-LM1||||M2Qn|| £ 35. 

If there is no such pair, we set M = £{M*:M* G 38] and TV = 
Ln_i + M. The least projection i n J^ greater than N is clearly less than 
Ln, so consists of the span of N and those Mi in ̂  which satisfy Mt < Mj 
for some Mj in ^ . By hypothesis, Mi must belong to 38, so TV is in «if. 
Hence 

e < d(Qn,iO ^ HGn - #11 = \\QnN^ - Qn^N\\ 
= max{\\QnNm,\\Qn±N\\}. 

We will suppose that HQfk/VH > e (the other case is similar). Since 
QnHl = Q.^N - Qn

LLn_u we get \\Qn^M\\ > e - 6 > e/2. 
The sets J / and 38 are disjoint (M* < Mi), so if Mi belongs to 38, 

\\Qn
±Mi\\ < VSd, and consequently M&^Mi < 3ôMt. So 

MiQnMi > (1 - 3ô)Mit 

and by adding over 38, 

MQnM ^ E W ^ > (1 - 35)M. 

Hence 

I IOn^AfOnl l 2 = \\QnLMQnMQn^\\ > ( 1 - 3 5 ) [| Qn±MQn^\\ 

> (1 - 3<5)(e/2)2 > (3<5)2. 

We set Tn = M. Then Tn belongs to «if" and thus to alg«if. 

LEMMA 2.3. Let ^£ be a commutative AF lattice ana let ̂ é be an AF 
lattice for which Q alg«J^ C Q alg-#. 77zen /or a// e > 0, there is a finite 
rank Me in*Jt so that for all M in^} M ^ M€ implies d(M, f£) < e. 

Proof. If the lemma is false for some e > 0, we will construct a chain 
3P in J^such that d(P, f£) > e for all P in 3P, contradicting Lemma 2.2. 
We proceed by induction. Let K{ be a sequence of finite rank elements of 
<Jé tending to I in the strong operator topology. If Pu . . . , Pn have been 
defined, choose an M in J( with M ^ Pn V Kn for which d(M, i f ) > €. 
If {Mk\ is a sequence of finite rank projections ^ M converging to M 
in the strong operator topology, then so is Mk

f = Mk V Pn V Kn. 
Because of the lower semi-continuity of the norm in this topology, we can 
find some k for which d(Mk',J^) > €. Set Pn+1 = Mk . Clearly 
Pn+i > Pni and Pn+\ > Kn implies that Pn tends to / , so 3P — [Pn] is 
AF. 

Definition 2.4. We will say that two AF lattices «if and *Jt are asymptotic 
if there is a lattice isomorphism <p from ^£ to <Jt such that lim ||<p(L) 
— L\\ = 0 in the sense that for every e > 0, there is a finite rank element 
L0 in «if so that every L ^ L0 in «if satisfies ||v?(L) — L\\ < e. 
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For commutative lattices, proximity implies a lattice isomorphism 
which is spatially implemented by a unitary operator. 

LEMMA 2.5. / / i f and <Jt are commutative AF lattices such that dist 
(M, oSf ) < 1/8 for every M in^, then there is a unitary operator U such 
that U*JtU~l is a sublattice of ££. 

Proof. Since \\Li — L2|| = 1 if L\ and L2 are distinct elements of S£, 
there is a unique element LM of ^ satisfying \\M — LM\\ < 1/8. If Mi 
and M2 belong to ^ , then 

Mi A M2 = MiM2 and Mi V M2 = Mi + M2 - MXM2. 

So we compute that 

< 1. 

The first remark of the proof now implies that 

I'MlI'Ml — LMIMÏ a n d LMI V LM2 — I>M\^Mli 

so <p(.M) = LM is a lattice isomorphism. Furthermore, dim M = 
dim LM since ||ikf — LM\\ < 1. Consequently, there is a unitary operator 
£/ such that UMU~l = Z,M for M in ~-#. This unitary is easily constructed 
by mapping the minimal (finite rank) projections in <J?" to the corre­
sponding projections in <p(<Jif)". 

It seems natural that Q alg i f should not depend on the behaviour of 
oaf restricted to any finite dimensional subspace. That is the content of 
the following lemma. This lemma does not hold for non-commutative 
lattices. 

LEMMA 2.6. If f£ is a commutative lattice and L0 is a finite rank projec­
tion in^', then Q alg^ = Q alg ( ^ V L0). 

Proof. Let A be an element of alg i f V L0. Then since L0 commutes 
with i f V Loj LO^-ALQ-1 is in alg i f V L0, and is a compact perturbation 
of A. If L belongs to J*?, 

LHU-LALo^L = (L V L,)*-{L^AL^)(L V L0) = 0. 

So -4 belongs to Q alg i f . 
Conversely, if A belongs to alg «Sf, then Lo-M^o1 belongs to 

alg i f V L0. 

Remark. If i f is a commutative AF lattice, Ç alg i f is closed. This 
follows from [4] which shows that s/ + jf(J4?) is closed for any norm-
closed algebra such thatJ3/ H j f ( j f ) is weak* dense in s/. This condi­
tion is easily seen to hold for alg i f , because if Ln are increasing finite 
rank projections tending strongly to the identity, then LnALn tends weak* 
to A for all A in alg i f . 
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THEOREM 2.7. Let^£ and Jtbe commutative AF lattices with Q alg «if C 
Q &\gJ£. Then there is a finite rank Mo in Jt such that Je V Mo is asymp­
totic and unitarily equivalent to a sublattice of ££. Further, 

Q d\gJt = Q &\<gJé V Mo. 

Proof. By Lemma 2.3, there is a finite rank Mo in J( such that 
d(M,Jf) < 1/8 for M ^ Mo in Je. Lemma 2.5 implies that Jto is 
unitarily equivalent to a sublattice «if i of «if. Lemma 2.3 implies that Jéo 
is asymptotic to «if i. The last claim follows from Lemma 2.6. 

COROLLARY 2.8. If ££ and M are commutative AF lattices and Q alg«if 
is unitarily equivalent to a subalgebra of Q algJf, then there is a finite rank 
projection Mo in Je such that Je V Mo is unitarily equivalent to a sublattice 

COROLLARY 2.9. If -^ and Je are commutative AF lattices and Q alg«if 
is unitarily equivalent to Q algJf, then there are finite rank projections L0 

in££ and Mo in Je such thatS£ V L0 is unitarily equivalent to Je V M0. 

If we specialize to the case in which Je is a chain, we need only assume 
similarity. 

COROLLARY 2.10. / / S£ is a commutative AF lattice, then alg«if is 
similar to a subalgebra of 2L3/~{&) if and only if ^ contains a chain 
\Ln\n ^ N} such that dim Ln = dim Pnfor n §; N. 

Proof. An algebra similar to alg &P is unitarily equivalent to alg SP 
since S(PnJ^f)S~1 are nested subspaces of dimension dim Pn (See [1]). 
The corollary now follows immediately from Theorem 2.7. 

COROLLARY 2.11. Q,3T{^£) is similar to Q^T^gP) if and only if there is 
an Lo in ^ for which J^ V L0 = \Ln\n ^ N} is a chain and dim Ln = 
dim Pn for n ^ N. 

The Corollary 2.11 for the case in which «if is a priori a chain is proved 
in [8]. Corollary 2.9 is proved for complemented AF lattices in [9]. 
J. Plastiras has informed me that she had also independently proved 
Corollary 2.10 for «if a chain. I would like to thank her for pointing out 
that the unitary U in Theorem 2.7 need not be a compact perturbation 
of the identity. 

Unfortunately, we do not know if the converse of Theorem 2.7 holds. 
That is, if «if a n d ^ # are asymptotic, are Q alg «if and Q algJf equal? 
When Je is a chain, the converse does hold because of the characteriza­
tion of quasitriangular algebras mentioned in the introduction. It is also 
true if Je is complemented. In this case, [7] implies that 

<2alg~^ = [A:AM - MA ejf(Jt) for all M'mJf}. 
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If J?? is asymptotic to ^ , it is readily verified that L — p(L) is compact 
for every L in ££ so Q alg J£ = Q a l g ^ . 

3. The AF condition for commutative lattices. The following 
theorem shows for commutative lattices that containment in Q alg ~# 
for some AF lattice ^essent ia l ly implies the AF condition. This theorem 
will enable us to reformulate most of the results of this paper, but for the 
sake of clarity, this will not be explicitly carried out. 

THEOREM 3.1. If ^ is a commutative lattice and Q alg «if C Q3?~{ëP), 
then there is a finite rank L0 in S£" such that S£ V Zo is AF. Further, 

Qa\g^ V U = Ç a l g ^ . 

Proof. ^£" is an abelian von Neumann algebra. Either i f " is AF, or 
i f " contains a projection M with no nonzero finite rank sub-projection 
in i f" . In the first case, Theorem 2.7 (applied to alg i f " C SlTif?)) 
implies that & is asymptotic to a sublatticeif i of if ". Since Q^if?) = 
^ ^ ( i f i), we can assume that & C i f " after this change. Denote by 
< se and < ̂  the partial orders on the minimal projections in ££" induced 

by i f and & respectively. Notice that & C i f if and only if Ar < # M => 
N <& M. We claim that, except for finitely many Mt in i f ", this relation 
holds. Otherwise choose distinct {Nk, Mkl k ^ 1} so that 

Nk@{2?)MkQ<i\g¥ 

but 

i V ^ ( ^ ) M * g a l g ^ . 

Since M*; and Nk are minimal, there is a projection Pn;fc in 0* with MkPn/c 

= M*and Pn^Njc = Nk. Let £/* be non-zero partial isometries with domain 
in Myfĉ f and range in NkJ^f. Then U = © £ £/* belongs to alg if , and 

ll^n/^njl è ||A^M*|| = 1. 

Since Pw is finite rank only finitely many Mk satisfy MkPn = Mkj so 
nk-^oo as k—>co. But then U is not in Qgf^eP) contradicting the 
hypothesis. Hence we have N <& M =* N <& M except for a finite set 
Mi, . . . , Mn. Let P 0 be a projection in ̂  greater than all these M*. Then 

j5fVp0 M =^ N -K^WPQ M , 

so ^ V Po Ç «if V P0 . In particular, i ^ V P 0 is AF. 
In the second case, we have M in i f " with no finite rank minimal pro­

jections. So we can extend M^£" to a maximal abelian non-atomic 
von Neumann algebra J/ on M^f. By induction we will construct pair-
wise orthogonal projections Mn mJV, projections Pn in &, and partial 
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isometries Un in JV supported on M„ J*t? such that 

1) \\Pn±UnPn\\ > 1/2 

2) 

3) 

Pn^UkPn 
k<n 

< 1/8 and 

Z MJPn < 1/8. 

Assuming this is possible, then U = 0 J2Un is a partial isometry in 
yV Q ££' for which ||Pn

J-Z7Pn|| > 1/4, contradicting the containment 

Now assume that M*, P*, and t/fc have been chosen for k < n> and 
that Nn is a given non-zero projection in jV orthogonal to ^2k<n Mk. We 
can choose a sequence of projections in J/ less than Nn which tend to zero 
in the strong operator topology. Then since Pn_i is compact, it follows 
that for some Rn in this sequence ||P^_iPw|| < 1/8. Also, Pn tends to I in 
the strong operator topology, so we can choose Pn such that | |PnPn | | > 
3/4. Since ^k<n Uk belongs to alg Jzf and hence i2.^"~(^), we can also 
choose Pn to satisfy 

Pn Z^i U]cPn < 1/8. 

Again using the properties of ^V, we can choose Mn in JV strictly less than 
Rn for which ||MnP»|| > 3/4. We set Nn+i = Rn - Mn. We now have 2) 
for Pn and since by construction we will have Z*^n M* ^ Rn, we have 
satisfied 3) for Pn_i. 

Let m = dim Pn and fix a unit vector x for which ||ikfrtPnx|| > 3/4. 
Since ^Y is maximal abelian non-atomic, we can find 24w pairwise ortho­
gonal projections Qt S Mn such that 

WQiPnxW = 3/4 2-2-. 

For Z = 0 , 1 , . . . ,4m - 1, let er,:{l,2, . . . , 24w} -> {1, - 1 } be the 
function taking the value + 1 and —1 on alternate blocks of length 2l. 
Let 

Xl = Ylvi(i)QiPnX' 

Then \\xi\\ = 3/4 and (xk,xt) = 0 if fe F^ /. Since the Hilbert-Schmidt 
norm of Pn is Vm, 

4m—1 

P«Xi m. 

Choose an / for which ||Pnxz||
2 ^ 1/4. Now define 

24m 

tf. = E *i(*)0«. 
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Then 

\\Pn
LUnPnx\\> = ||iV-*,||* ^ (3/4)2 _ 1 / 4 > 1 / 4 | 

proving 1). 

4. The non-commutative case. If <J? is not commutative, the 
situation is less clear because the structure o f ^ is less rigidly defined. In 
particular, we cannot hope for a unitary equivalence as in Theorem 2.7. 
The best one could expect is a similarity by an invertible operator, but 
we do not know if this is possible. Also, if M0 is a finite rank element of 
~#, it may happen that Q alg M V M0 is not equal to Q aig^f. 

LEMMA 4.1. If A and C are projections on a finite dimensional Hilbert 
space 34? satisfying A A C = 0, A V C = I^>, and WA1- — C\\ > 3/4, 
then 

d{A\à\g{A,C)) > 1/4. 

Proof. Since dim AL = dim C < oo, we have 

\\A± - C\\ = sin0 > 3/4 

where 6 is the greatest angle between A Lffl and C3f. So there is a unit 
vector x such that Cx = xy and 

WA-L-xW = cos (9 < 1/V2. 

(To verify this, choose a unit vector y with {{A1- — C\\ = WA1- — Cy\\. 
Note that Jf = span {ALy} Cy) is invariant for both AL and C. Com­
pute ^ ^ and C on JT.) Let £/ be a partial isometry of ^ 4 - ^ onto Cffi. 
Decomposing^ = Affi 0 ALffi, the matrix of U has the form 

[o wy 
Since i A C = 0, ^ is invertible in A1-^. Let 3/ = U*x. Then # = 
Cty = Wy + Xy, so A-hc = Wy * 0 and ||Wy|| < 1/V2. Now A1- = 
[/*£/ = J F W + X * * , s o l = IM-^II2 = ||W /y||2+ ||-yy||2. Thus 

\\Xy\\* > 1/2 and \\XW~l\\ è I IXTF- 1 ^ ) ! ! I l ^ l l - 1 ^ 1. 

All operators in alg {A, C} have the form 

with respect to the (non-orthogonal) decomposition^7 = A 34? + C34?. 
The invertible operator S = A + U carries A 34? onto A 34? and A ±Jf? 

onto C34?, so with respect to 34? = A 34? © A-hZf?; 

' I -XW~X\ 
s = 

I X 

0 w. s~l = 
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and T has the form 

I X 
0 W 

Y 0 
0 Z 

i -xw-1 

o w-1 

where Z ' = W~lZW. 
If such an operator satisfies \\T — AL 

\\I - Z'\\ < 1/4. But then 

\\XW-lZ' - YXW-

Y (XW-l)Zf - Y{XW~l) 
0 Z' 

< 1/4, then || F|| < 1/4 and 

> \\xw- - \\XW-*U\\I - Z'\\ + \\Y\\) 

è l/2\\XW~l\\ > 1/2, 

Hence if T is in alg {A,C), then | |P - ^ H ^ 1/4. 

THEOREM 4.2. Let ~£ be a commutative AF lattice and let^é be an AF 
lattice for which Q alg ̂  C Q a l g ^ . r/^^n ^ere is a /mite raw& Mi in ^ # 
swcfo thattJé V Mi is asymptotic to a sublattice of S£'. 

Proof. By Lemma 2.3, there is a finite rank M0 in ^ # such that 
d(M,J£) < 1/24 for M è M0. So to each M ^ M0, there corresponds 
a unique element LM in £g with j|M — LM\ < 1/24. If M > N, then 
MTV = N, so LM > LAr as in the proof of Lemma 2.5. Also since 

LP A LR = LPLR and P A R = l i r n ^ (PPP)W, 

a simple estimate shows that LPAiB ^ LPLR. Similarly, LPV.R = Pp V LR. 
Wé will show that there is a finite rank M\ in ̂ # so that if P and P belong 
to *Jt V Mi, then equality actually holds in both these relations. 

If this is not the case, we can inductively choose finite rank projections 
Mn, Pn, Rn and Nn in Jt V M0 so that Pn A Rn = Mn, Pn V Rn = Nn, 
Mn+i ^ Nn and either LPnLRn > LMn or LPn V LRn < LiVn. We achieve 
this as follows: Given iVw_i, we can find P and P greater than Nn-i so that 
either LpL^ > LPAR or LPVLR < LPyR. We must ensure that Pn 

and P n are finite rank. So take a chain Cn of finite rank elements of *Jt 
with C0 = Nn, Cn-^> P A R in the strong operator topology. Then 
select chains Pn and Rn of finite rank projections i n ^ # converging to P 
and P respectively such that Pn ^ Cw and Rn ^ C„. This ensures that 

Pn ARn-^P A P and Pn V Rn-^ P V R. 

For any chain M„ A M, the lower semi-continuity of the norm in the 
strong operator topology, and the fact that \\M — L\\ < 1/8 uniquely 
determines L as LM implies that LMn A LM. Hence 

PpnAfln ~~> LPAR and LPnyRn —> LPyR. 

Since J?f is commutative, it also follows that 

LPnLRn -A PpL^ and LPn V LBn A LP v LB. 
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Thus, if LPnyRn •£ LPn V LRn, 

lim sup \\LPnvRn — LPn V LRn\\ ^ \\LPvR - LP V L«|| = 1 

and consequently LPnyRn 9^ LPn V LRn for some n. The case for inter­
sections is identical. 

We now apply Lemma 4.1 to the Hilbert space J ^ = (Nn — Mn)^f 
with I = Nn- Mn, A = Pn - Mn and C = Rn - Mn. Let V = 
LNn - LMn1 A' = LPn - LMn and C = LRn - LMn. Then \\A - A'\\ < 
1/12, ||C - C'\\ < 1/12 and ||7 - I'\\ < 1/12. By construction, either 
A'C 9± 0 or A' V C * I', so C" * V - A' and hence ||C" + A' -
r\\ = 1. Thus, 

||C _ A±\\ = \\c+A- I|| £ 3 / 4 . 

So Lemma 4.1 shows that 

d(A\3lg{A,C}) > 1/4. 

Therefore 

d(Nn - Pn , a l g ^ ) è <*(#» ~ P„, alg {Pn> 22»}) > 1/4. 

Drop to a subsequence if necessary to ensure that 

T,\\(Nn-Pn) - (LNn- LPn)\\ < co. 

Let B = E © (#» ~ ^») and 5 ' = £ © L^n - LPn. Then W belongs 
to alg i f and £ — 5 ' is compact. If T is any operator in a l g ^ , the 
operator (Nn - Mn)T(Nn - Mn) belongs to alg {Pn) Rn). So 

\\(Nn- Mn){T - B){Nn- Mn)\\ è d(a\g{Pn}Rn},Nn-Pn)^l/4. 

Consequently, B is not a compact perturbation of T so neither is B''. This 
contradicts alg «if Ç Ç a l g ^ . 

So we must h a v e ^ V Afi lattice isomorphic to a sublatticeif 1 of i f . 
Finally Lemma 2.3 shows t h a t ^ V Mi is asymptotic to i f 1. 

5. Quasitriangular algebras. Suppose that <if is commutative and 
0 alg .if C Ç a l g ^ . Then for every M mJ( and T in alg i f , MLTM 
is compact. In other words, M is an essentially invariant subspace of 
alg i f . The following theorem due to the author [2] makes it seem likely 
that the AF condition of Theorem 3.2 is unnecessary. 

THEOREM 5.1. If ^ is commutative and M is essentially invariant for 
alg if', then there is an L inS£for which M — Lis compact. 

This theorem can be applied to give variants of Theorem 3.2, but we 
will restrict ourselves to the following application. 
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LEMMA 5.2. Suppose Q alg^# contains a quasitriangular algebra Q^TiSP) 
and is not all of Sè(ffl). Then there is a finite dimensional projection Mo1 

in<JéL such that^t V MoL is AF. 

Proof. By Theorem 5.1, every projection in~#is either finite or cofinite. 
Let Mo (Mi) be the supremum (infimum) of all finite (cofinite) rank 
projections i n ^ . Then Mo and Mi are either finite or cofinite. If Mi is 
finite, there is a decreasing chain S% of cofinite projections i n ^ # with 
infimum Mi. So 

Q^i^1-) = £$-(&)* C (QalgU^)* C (Çalg^?)* 

= Ç a l g ^ - 1 = Qalg ( ^ V Mi). 

But Qalg {01L V Mi) is quasitriangular, so by Theorem 3.1, &1 is 
AF which is absurd. So Mi is cofinite. So if MQ were finite, Q a l g ^ 
would equal 3&(tf). Thus Mo is cofinite a n d ^ V MoL is AF. 

THEOREM 5.3. If ^ is a commutative lattice such that Q a l g i f contains 
a quasitriangular algebra, then Q a l g i f is quasitriangular. 

Proof. By Lemma 5.2, *£ V Lo1- is AF. So by Theorem 2.7, there is a 
finite dimension Li in ££ V Lo-1 so that «if V Lo1- V Li is a chain. 
Hence 

Q a l g i f = Qalg ( i f V UL V LO 

is quasitriangular. 

LEMMA 5.4. If Q a l g ^ contains a quasitriangular algebra, then there is 
a finite rank projection M in *stff V ̂ ± for which Q alg ( « ^ V M) is 
quasitriangular. 

Proof. Substitute Theorem 4.3 for Theorem 2.7 in the proof of Theorem 
5.3. 

In view of this lemma, if Q a l g ^ contains a quasitriangular algebra 
£2S~(0$), then <J( V M is asymptotic to a subset of ^?. So we may 
assume t h a t ^ V M is contained in S% = {i?n:w è 0}. For definiteness 
we can assume that R0 = M and £% is maximal (dim i^+ii^-1 = 1 for 
all », dim i^0 = w0 < oo ). Choose a basis for Ro1^ so that 

Rn = Ro ® [ek:l S k S n] for each ». 

Let 2 be the subset of N for which 

l V i ? o = {Rn'.n G 2} = ^ 2 . 

We now restrict ourselves to the following special case. Let fk be a 
sequence of unit vectors in Ro^f, and let an be an arbitrary sequence of 
complex numbers. Define 

Mn = [ek + akfkj 1 ^ k ^ n] 

https://doi.org/10.4153/CJM-1981-054-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-054-0


REFLEXIVE ALGEBRAS 697 

for n belonging to a subset A of 2. Then Mn V Ro = Rn and Mn A 
Ro = 0. Let Mœ = Vrt^i Afn. Then 

Je = {0t^ZjMnfne A,Mœ,I] 

is a lattice. By the remarks of the preceding paragraph, we see that 
Q algJf represents a large class of those algberas containing a quasi-
triangular algebra. Let 2f be the algebra of diagonal operators on the 
basis {en}. 

THEOREM 5.5. The following are equivalent. 

1) ^ C Q a l g U ? 

2) £$-{&*) = Q a l g ^ 

3) Ë h t | 2 <oo . 

In this case, there is an idempotent E for which the map A —> EA is a 
projection of $~(0%?) into a l g ^ with kernel RQ& (Jtf). 

Proof. 2) implies 1) is clear, and the inclusion Q alg~# C Q3T{g%?) 
is also obvious. Assume that 3) holds. 

We will denote by Tx®y the operator Tx®vh = (h, y)x. Let 

E — Ro1 + 2Lu akTfk%eh> 

Agi 

The Hilbert-Schmidt norm of R0E is 
CO CO 

M | 2 2 = Z!ltfo^||2 = Z k l 2 < < » -
A ; = l k=l 

Hence E — Ro1- + RQE = ERQ1 is a bounded operator, and these 
relations readily verify that E = E2 with kernel R0Jlf. Now if A belongs 
to^~(c^ 2 ) , then EA does also because R^A and R0& (34?) belong to 
^ ( ^ s ) . If Mp is i n o # a n d n ^ £, then 4 / n Ç i ? 0 ^ a n d Aen 6 2 ? ^ , so 

CO 

E 4 (e„ + a»/») = R<tAen +J2 ak(A (en + a»f„), ek)fk 
k=l 

V 

= J2 (Aen,ek)(ek + akfk). 
k=l 

Thus Mp is invariant for EA. Consequently, 

E.T(&v) C a l g ^ , 

and since I — E is compact, 

â ^ ~ ( ^ s ) = Q algU?. 

Thus, 3) implies 2). 
Now suppose that 2) C Q a l g ^ # but ]C*Li |a*|2 = oo. We need a 
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certain subset A of N, but as its construction is delicate, we will delay it 
temporarily. Once given a subset A, we define the projection D onto 
[en:n G A]. Then D is a diagonal operator with matrix (dn) where dn = 1 
for n in A, dn = 0 otherwise. Since D is in 2), there is a compact operator 
K such that A = D + K lies in alg-#. Since D is in c^"(^?2), so is i£. 

We define Hilbert-Schmidt operators 

V 

Hv = — Ro + Z^ akTfk0ek. 
k=l 

We compute 

\\HP\\2
2 = n0 +Y1 W\2 

where w0 = dim R^ffl. If £ is in A and n ^ p} then i£p G ^ , hence 

^ n = 0̂ + ^ 6*0* 
*=1 

where r0 = RoKeni bn = dn + ( & B , 0 . and bk = (Ken,ek), k ^ n. 
Since Mv is i n . ^ , 

v 
A (en + anfn) = XI **' fe + akfk). 

*=1 

Also since Kfn is in RoJ^f, a comparison of the coefficients shows that 
bk — bk . So by projecting onto RoJ/f, we get 

v 
R0Ken + anKfn = ]T (Keny ek)akfk + dnanfn 

k=i 

V 

an(K - dn)fn = -R0Ken + J^ (Ken> ek)akfk = HvKen (El) . 
*=1 

By assumption, ||i?p||2 —* °° as p increases, so 

Since the sequence H i ^ l ^ - 1 ^ has norm bounded by one, it tends to 
zero in the strong operator topology. 

We now make use of the following elementary lemma which does not 
seem to be in the literature. The proof is omitted. 

LEMMA 5.6. If K is a compact operator and hn is a sequence of Hilbert 
Schmidt operators with \\hn\\<L bounded such that hn tends to zero in the strong 
operator topology, then \hnK\i tends to zero. 

We conclude that WHp^^HpK tends to zero in the Hilbert-Schmidt 
norm. We will prove 1) implies 3) by showing that this fails. 
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We now return to the construction of A. Let Pn = |Cn,i} be finite 
partitions of the unit sphere of Mo^f such that the diameter of Cn>i is 
less than 1/n. For each subset a of elements of Pn, let an<a = {k: fk 6 
CUti G a] be the set of integers k for which fk belongs to Cn,i for some 
element of a. Let <TJ be an enumeration of the an>a as n ranges over N so 
that each an>a is repeated infinitely often. We inductively choose integers 
Uj < rij+i in A and a subset A of N, such that 

iP?»yll22 ^ L Î W 2 : £ ^ « i . K S , ) (E2) 

where Sj = ( A H aj) U (AC P I O-/), and c denotes the complement in N. 
If tij and A P\ {1, 2, . . . , n3\ have been chosen, choose nj+i G A suffi­
ciently large so that 

I l l ^ + J h 2 ^ Z{\ak\*:k ^njtkeSj+1) 

+ L (Kl2:?*; < k S nj+i}. 

This is always possible as £ \ak\
2 = oo. Then define 

A r\ {UJ + 1, . . . , nj+i] = o-̂ +i H {uj + 1, . . . , nj+i}. 

Clearly, A now satisfies (E2) for aj+i. Hence for a given o-w>a, there are 
infinitely many Uj for which (E2) is satisfied. 

Now take D and K corresponding to A as in the first paragraph. 
Choose an integer N for which ||i£|| ^ iV/4. If fk belongs to CN<i of PN, 
either 

\\KM ^ 1/2 or | [ ( K - l)fk\\ è 1/2. 

If fj is any other vector in Cn<u 

\\KUi-fi)\\ ^ \\K\\/N ^ 1/4. 

So either | | i ^ , | | ^ 1/4 for a l l / , in CnA or \\{K - l)fk\\ ^ 1/4 for all A 
in CNti. Let a be the set of CNfi for which the latter relation holds. Let 
a = <7w>a, and let wi, w2, . . . be integers in A for which (E2) is satisfied 
for (7. Then using (El) we get 

\\HniK\U2^f: \anf\\(K - dn)fnf 

= Z\\an\
2\\(K- 1)/,||*:« ^ n„n<E Aj 

+ £{klW«ll2:» ^nun(L A} 
è Z Ï16—a[ot«|2rw ^ »,, n 6 A H a} 

+ Z {lô^kl*:»» g B j . M Ç A c f W } 

^ 1/3211̂ ,11,*. 

Consequently, ||iî„,||2_1||-^n,-^l|2 is bounded away from zero, giving the 
desired contradiction. 
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Added in proof. Since this paper was written, a paper by N. T. Andersen, 
Compact perturbations of reflexive algebras, J. Func. Anal. 88 (1980), 
366-400, has appeared which contains related results. 
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