Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T04:59:00.408Z Has data issue: false hasContentIssue false

Bireflectionality in Classical Groups

Published online by Cambridge University Press:  20 November 2018

Erich W. Ellers*
Affiliation:
University of Toronto, Toronto, Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The motion groups of the real Euclidean plane and of the elliptic plane, the group of projectivities of a line, the projective general linear group PGL2(K), some orthogonal groups O3(K, Q) with char K = 2 (see [8]), are all bireflectional (zweispiegelig). There can be no doubt that bireflectional groups are of prime importance in any theory of groups that are generated by involutions. A brief look into F. Bachmann's book [1] gives convincing evidence.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

1. Bachmann, F., Aufbau der Géométrie aus dem Spiegelungsbegriff, 2nd edition (Springer, New York-Heidelberg-Berlin, 1973).Google Scholar
2. Coxeter, H. S. M., Regular polytopes, 3rd edition (Dover, New York, 1973).Google Scholar
3. Coxeter, H. S. M. Regular complex polytopes (Cambridge University Press, 1974).Google Scholar
4. Dienst, K. J., Bewegungsgruppen projektiv-metrischer Ebenen von Char. 2. J.reine u.angew. Math. 050 (1972), 135140.Google Scholar
5. Dieudonné, J., La géométrie des groupes classiques (Springer, Berlin-Gôttingen-Heidelberg, 1955).Google Scholar
6. Ellers, E. W., Decomposition of orthogonal, symplectic, and unitary isometries into simple isometries, Abh. Math. Sem. Univ. Hamburg Jfi Google Scholar
7. Ellers, E. W. Decomposition of equiaffinities into reflections, to appear, Geometriae Dedicata.Google Scholar
8. Lingenberg, R.. Die orthogonalen Gruppen Oz(K, Q) ùber Kôrpern von Charakteristik 2, Math. Nachr. 21 (1960), 371380.Google Scholar
9. O'Meara, O. T.. Group-theoretic characterization of transvections using CDC, Math. Z. 110 (1969), 385394.Google Scholar
10. Veblen, O. and Young, J. W., Projective geometry, Vol. II (Blaisdell, New York, 1946).Google Scholar
11. Wiener, H., Ùber Gruppen vertauschbarer zweispiegeliger Verwandtschaften, Ber. Verh. kgl. Sachs. Ges. Wiss. Leipzig, math.-nat. Kl. 45 (1893), 555598.Google Scholar