Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-03T00:01:27.656Z Has data issue: false hasContentIssue false

Arithmetical Inversion Formulas

Published online by Cambridge University Press:  20 November 2018

Eckford Cohen*
Affiliation:
University of Tennessee
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let n and r be integers, r positive, and define the coreγ(r) of r to be the product of the distinct prime factors of r (γ(1) = 1). Let f(n,r) be a complex-valued, arithmetical function of n and r. If for all n,f﹛n,r) = f((n,r), r) then f(n, r) is called an even function (mod r), and if f(n,r) = f(γ(n, r), r) for all n, γ(n, r) = γ((n, r)), then f(n, r) is said to be a primitive function (mod r). Clearly, both classes of functions are subclasses of the periodic functions (mod r), while the primitive functions form a subclass of the even functions (mod r).

In a series of three papers (3; 5; 6) the author developed parallel, though interrelated, trigonometric and arithmetical theories of the even and primitive functions (mod r).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1960

References

1. Anderson, Douglas R. and Apostol, F.M., The evaluation of Ramanujan's sum and its generalizations, Duke Math. J., 20 (1953), 211216.Google Scholar
2. Brauer, A. and Rademacher, H., Aufgab 31, Jahresbericht der deutschen Mathematiker- Vereinigung, 85 (1926), 9495.(supplement).Google Scholar
3. Cohen, Eckford, A class of arithmetical functions, Proc. Nat. Acad. Sci., 41 (1955), 939944.Google Scholar
4. Cohen, Eckford, Some totient functions, Duke Math. J., 28 (1956), 515523.Google Scholar
5. Cohen, Eckford, Representations of even functions (mod r), I. Arithmetical identities, Duke Math. J. 25 (1958), 401421.Google Scholar
6. Cohen, Eckford, Representations of even functions (mod r), II. Cauchy products, Duke Math. J., 26 (1959), 165182.Google Scholar
7. Holder, O., Zur Théorie der Kreisteilungsgleichung, Prace Matematyczno-Fizyczne, 43 (1936), 1323.Google Scholar
8. Landau, Edmund, Ueber die zahlentheoretische Funktion ϕ(m) und ihre Beziehung zum Goldbachschen Satz, Göttinger Nachrichten, (1900), 177186.Google Scholar